
Embedded Object Detection

with

Convolutional Neural Networks

Bachelor Thesis in Electrical Engineering and Information Technology
Lucerne University of Applied Sciences and Arts - Engineering & Architecture

Author: Cyrill Durrer

Supervisor: Prof. Dr. Jürgen Wassner
Expert: Thomas Schmidiger

Spring semester 2020

Alle Rechte vorbehalten. Die Arbeit oder Teile davon dürfen ohne schriftliche Genehmigung der Rechteinhaber weder in
irgendeiner Form reproduziert noch elektronisch gespeichert, verarbeitet, vervielfältigt oder verbreitet werden.

Sofern die Arbeit auf der Website der Hochschule Luzern online veröffentlicht wird, können abweichende
Nutzungsbedingungen unter Creative-Commons-Lizenzen gelten. Massgebend ist in diesem Fall die auf der Website angezeigte
Creative-Commons-Lizenz.

Bachelor-Thesis an der Hochschule Luzern - Technik & Architektur

Titel Embedded Object Detection with Convolutional Neural Networks

Diplomandin/Diplomand Durrer Cyrill

Bachelor-Studiengang Bachelor Elektrotechnik und Informationstechnologie

Semester FS20

Dozentin/Dozent Wassner Jürgen

Expertin/Experte Schmidiger Thomas

Abstract Deutsch
Convolutional Neural Networks (CNN) werden häufig für die Bildverarbeitung, speziell für die Detektion
von Objekten, eingesetzt. Ein an der HSLU entwickelter Low-Cost CNN Accelerator soll dabei helfen, diese
auf eingebettete Systeme mit wenig Rechenleistung zu bringen. Die Zielhardware besteht aus einer
Kombination aus Processing System (PS) und Programmierbarer Logik (PL).
Ein einfacher CNN Single-Shot-Detektor (SSD-7) wurde ausgewählt, trainiert und getestet. Er erreichte einen
mAP-Wert («Mean Average Precision») von 0.308. Nach der Umwandlung in eine binär approximierte Form
erreichte der Algorithmus nahezu gleich gute Resultate (0.303). Ein Abschätzung der
Ausführungsgeschwindigkeit dieses Netzwerks auf einer Mid-Range sowie einer Low-End Hardware ergab
Verarbeitungsraten von 99.23 beziehungsweise 6.54 Bilder pro Sekunde. Dies ist ausreichend für viele
Echtzeit-Anwendungen.

Abstract Englisch
Convolutional Neural Networks (CNN) are widely used for image processing and especially object detection.
A Low-Cost CNN Accelerator developed at HSLU aims to bring these algorithms onto embedded systems
with limited computational power. The target hardware consists of a combination of processing system (PS)
and programmable logic (PL).
A lightweight CNN single-shot detector (SSD-7) was selected, trained and tested, achieving a mean average
precision (mAP) of 0.308. This network was converted to a binary approximated form and tested again,
achieving almost the same performance as the original (0.303). For this network, the maximum inference
speed for a mid-range as well as a low-end hardware was estimated. With inference speeds of 99.23,
respectively 6.54 inferences per second, this approach could be useful for many embedded systems which
require a low-cost, low-power object detector with real-time capabilities.

Ort, Datum Horw, 07.06.2020
© Cyrill Durrer, Hochschule Luzern – Technik & Architektur

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Contents

1 Introduction 4
1.1 Outline . 4
1.2 Hardware and Tools . 4

1.2.1 Software . 4
1.2.2 Version Control . 4
1.2.3 Development and Training Hardware . 4
1.2.4 Target Hardware . 5

2 Object Detection 6
2.1 Overview . 6

2.1.1 Image Classification . 6
2.1.2 Object Localization . 6
2.1.3 Object Detection: Recognizing Multiple Objects 6
2.1.4 Class Encoding . 6
2.1.5 Bounding Boxes . 6

2.2 Datasets . 7
2.2.1 Pascal Visual Object Classes (VOC) . 7
2.2.2 Common Objects in Context (COCO) . 7
2.2.3 ”Udacity” - Dataset . 7
2.2.4 ”Roboflow” Improvements on the ”Udacity” Dataset 7

2.3 Performance Metric . 8
2.3.1 Overview . 8
2.3.2 Intersection over Union . 8
2.3.3 Confusion Matrix . 9
2.3.4 Precision and Recall . 9
2.3.5 Precision-Recall Curve and Average Precision 10
2.3.6 Mean Average Precision . 10
2.3.7 Pascal VOC 2007 & 2012 Evaluation Metrics 10
2.3.8 COCO Evaluation Metric . 10

3 Single-Shot MultiBox Detector 11
3.1 Concept and Architecture . 11

3.1.1 Predictor Layers . 11
3.1.2 Anchor Boxes . 12
3.1.3 Non-Maximum Suppression Stage . 12
3.1.4 Activation Functions . 12

4 SSD in Floating Point Precision 13
4.1 SSD-7 with Keras . 13

4.1.1 Network Architecture . 13
4.1.2 Hyperparameters . 14
4.1.3 Training . 15

4.2 Tests and Results . 15
4.2.1 Prediction Observations . 15
4.2.2 Prediction Performance . 16

4.3 Interpretation . 17

HSLU Cyrill Durrer 1

Embedded Object Detection with Convolutional Neural Networks BAT FS20

4.3.1 Achieved Performance . 17
4.3.2 Class Performance Difference . 18
4.3.3 Class-Dependent Confidence Thresholds . 18

5 SSD for Embedded Systems 20
5.1 Binary Approximated Neural Networks . 20

5.1.1 Choosing the Number of Binary Filters . 20
5.1.2 Binary Retraining . 20
5.1.3 Change of Activation Function . 20

5.2 Tests and Results . 20
5.2.1 Without Retraining . 20
5.2.2 With Retraining . 22
5.2.3 ReLU as Activation Function . 22

5.3 Interpretation . 23
5.3.1 Without Retraining . 23
5.3.2 With Retraining . 23
5.3.3 ReLU as Activation Function . 24

6 Hardware Implementation 25
6.1 Hardware Accelerator Concept . 25
6.2 Hardware Constraints . 26
6.3 Hardware Consumption Estimation . 26
6.4 Inference Speed Estimation . 27

6.4.1 Hardware Accelerator . 27
6.4.2 Feature Buffers and Memory Access . 29
6.4.3 Reducing Memory Requirement: Tiling . 30
6.4.4 CPU Workload . 30

6.5 Interpretation . 32
6.5.1 Real-Time Capability . 32
6.5.2 Mid-Range vs. Low-End . 33
6.5.3 Feature Buffer Bottleneck . 33
6.5.4 CPU Workload Bottleneck . 33

7 Conclusion 34
7.1 Embedded Object Detector . 34
7.2 Choosing the Parameters . 34

7.2.1 Scenario 1: Target Hardware . 35
7.2.2 Scenario 2: Target Inference Speed . 36

7.3 Major Challenges . 37
7.3.1 mAP Computation . 37
7.3.2 Framework Incompatibility: Keras API vs. tf.keras 37

7.4 Outlook . 37
7.4.1 CPU Bottleneck Investigation . 37
7.4.2 Memory Access Bottleneck Investigation . 37
7.4.3 Hardware Accelerator Adjustments . 38
7.4.4 High-Level Optimization . 38
7.4.5 Different Datasets . 38
7.4.6 Comparison with Competitors . 38

8 List of Abbreviations 39

9 List of Figures 40

10 List of Tables 41

11 Bibliography 43

HSLU Cyrill Durrer 2

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12 Appendix 44
12.1 Equations . 44
12.2 Additional Lists and Tables . 45

12.2.1 Hardware Consumption . 45
12.2.2 Inference Speed Estimations . 48
12.2.3 Datasheets . 57
12.2.4 Project Definition . 58
12.2.5 Project Schedule . 61

12.3 Source Code . 63
12.3.1 Dataset Preprocessing . 63
12.3.2 mAP Computation . 65

HSLU Cyrill Durrer 3

Embedded Object Detection with Convolutional Neural Networks BAT FS20

1. Introduction

This thesis is written in the context of a bachelor degree at the Lucerne University of Applied
Sciences and Arts (HSLU). It is part of a project aiming to provide a framework which allows
to convert a neural network such that it can be used on an embedded system consisting of a
combination of processing system (PS) and programmable logic (PL). The key to running a com-
putationally expensive task, such as object classification or detection, on an embedded system is
resource optimization and hardware acceleration.
This is done in two stages. The first stage is an evolutionary algorithm, which allows the user to
generate a resource optimized network architecture with a minimum reduction in performance[16].
In the second stage, the optimized network is converted to a binary approximated model
(BinArray[11]), in which most of the computation at inference time can be executed on a hardware
accelerator implemented on the PL.

1.1 Outline

Prior to the publication of this thesis, the Low-Cost CNN Accelerator framework was only tested
for image classification tasks. The objective of this work is to assess if this framework can also
be applied to object detection tasks. The chosen network architecture is a Single Shot MultiBox
Detector[18] (SSD, chapters 3 and 4). The question of interest is how many binary filters (M)
are required for the binary approximation to keep the performance of the network and whether
or not it is even possible to maintain the performance on a satisfactory level. After assessing
the performance of the binary approximated network, the inference speed of the network on an
embedded system can be estimated. This is an indication for the maximum frame rate of an image
stream which can be processed in real-time. Because this is highly dependent on the available
hardware resources, the results are always set in relation to the amount of resources required. This
enables a potential user to determine the optimum values for himself and provides an estimate of
what performance and inference speed can be achieved.

1.2 Hardware and Tools

1.2.1 Software

The code in this thesis is written in Python. The parts dealing with deep neural networks use the
Keras[3] library and the TensorFlow-framework[6].

1.2.2 Version Control

To keep track of the progress of the project and to be able to share it with others, Git and
GitLab/EnterpriseLab are used. Because the code needs to fulfill various requirements like training
and predicting in floating point precision (git-branch: SSD Standard) and converting the model
to the binary approximation (git-branch: SSD BA), multiple branches are used in parallel.

1.2.3 Development and Training Hardware

The code was mainly executed on two machines:

HSLU Cyrill Durrer 4

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Machine 1: ”Lenovo ThinkPad X1 Extreme” notebook running on Windows 10 equipped with
an ”Intel Core i7-8750H” hex-core CPU, a ”Nvidia GeForce GTX 1050 Ti” GPU and 32 GB of
RAM. This machine was mostly used to write the code, test it and check predictions of the network.

Machine 2: Workstation running on Ubuntu equipped with an ”Intel Core i7-8700” hex-core
CPU, a ”Nvidia RTX2080 Ti” GPU and 64 GB of RAM. Due to the powerful GPU most of the
neural network training documented in this thesis was executed on this machine.

1.2.4 Target Hardware

In this project, a general feasibility of this approach for hardware accelerators with field-
programmable gate arrays (FPGA) is investigated. However, to be able to give concrete numbers
on the efficiency of the implementation, two possibilities are presented. As an example of a mid-
range hardware, the Xilinx Zynq-7045 (XC7Z045) with an Kintex-7 FPGA and a dual-core ARM
Cortex-A9 CPU serves as target hardware. To investigate the performance which can be achieved
using low-end hardware, the similar but much cheaper Zynq-7010 (XC7Z010) with the same ARM
CPU, but with a smaller Artix-7 FPGA is chosen. Both are built as system on a chip (SoC) an
belong to the Zynq-7000 family. Based on [11], 400 MHz serves as maximum clock frequency of
the FPGA. It is assumed that the Artix-7 can run at the same clock frequency as the Kintex-7.
This is probably not possible, but with newer devices of a similar price range a clock frequency of
400 MHz or more can be achieved.
The hardware constraints limiting parallel processing, and thus inference speed, are taken from
the official datasheets of the respective hardware (appendix, section 12.2).

HSLU Cyrill Durrer 5

Embedded Object Detection with Convolutional Neural Networks BAT FS20

2. Object Detection

2.1 Overview

In order to understand object detection it is crucial to know what image classification and object
localization are. This section describes the two concepts and transitions to the combination of the
two.

2.1.1 Image Classification

In image classification, the objective is to find the class best fitting the image. If there is a car
in the foreground of the image, an image classification network should output the class ”car”. It
does not matter that there is a pedestrian somewhere in the background, because the classification
network’s task is only to classify the most obvious object in the picture.

2.1.2 Object Localization

If it is important to know where in the image an object is, object localization must be applied. A
combination of image classification and object localization gives information about where in the
image the object is and finds the corresponding class[12]. The localization information typically
consists of a set of coordinates (section 2.1.5).

2.1.3 Object Detection: Recognizing Multiple Objects

Algorithms which are able to classify and localize multiple objects in an image are called object
detectors. In fields such as autonomous driving, industrial machine control and robotics this is of
great interest, because in many situations it is essential to get information about more than one
object in an image or video.

2.1.4 Class Encoding

To train a neural network, a one-hot encoding for classes is often used. This means that every
possible class which occurs in the dataset gets its own cell in a matrix or tensor. One-hot encoding
allows the network to assign a confidence value to every class, indicating how high the network
predicts the probability that this object is actually there. Based on these probabilities, the non-
maximum suppression stage (NMS, section 3.1.3) is able to filter the predictions for the ones with
the highest probability of being true.
The one-hot encoding in this thesis consists of six values: Five for the object classes and one for
the background class.

2.1.5 Bounding Boxes

In this thesis, rectangular bounding boxes are used to describe the position of the detected objects.
There are multiple ways to represent a rectangle as a vector. In this work, bounding box coordinates
are encoded in the ”centroid” format:

centroid coordinates “ rcx, cy, w, hs (2.1)

HSLU Cyrill Durrer 6

Embedded Object Detection with Convolutional Neural Networks BAT FS20

where cx and cy represent the center coordinates and w and h the width and height of the box.
Coordinates are scaled to a number between zero and one, representing the proportion of the total
image size instead of the number of pixels (equation 2.2).

rcxrel, cyrel, wrel, hrels “
rcxabs, cyabs, wabs, habss

rximage, yimage, ximage, yimages
(2.2)

To convert the coordinates back into absolute pixel values, equation 6.9 is applied.

2.2 Datasets

To assess the applicability of the Low-Cost CNN Accelerator framework on object detection tasks,
a fitting dataset needs to be chosen. This dataset should contain a rather small amount of different
classes to allow a relatively small network to effectively differentiate between them. It should also
contain enough labelled images to train the network appropriately and the labels should contain
as few errors and inaccuracies as possible.

2.2.1 Pascal Visual Object Classes (VOC)

Pascal VOC was an object detection challenge lasting from 2005 to 2012. In 2007, a dataset
containing about 10’000 images with 20 classes was released. It was increased until it contained
more than 20’000 images in 2012[8].
This dataset is considered one of the most important in the field. It helped to set the conditions
for modern object detection. With 20 classes it is already quite challenging for a simpler network
and thus not suited for this project.

2.2.2 Common Objects in Context (COCO)

COCO is a large-scale object detection, segmentation and captioning dataset originally created by
Microsoft in 2014. It consists of about 328’000 labelled images with 80 object classes. Apart from
object detection it can also be used for image segmentation[17].
Because it is newer and far bigger than Pascal VOC, nowadays this dataset is very common to train
more complex object detectors. With as many as 80 classes, the network used for detection needs
to be large and trained on big amounts of data in order to effectively discriminate between classes.
Because this project is about the general possibility of running an object detection network on an
embedded system, a simpler dataset is more suitable.

2.2.3 ”Udacity” - Dataset

Udacity is an educational platform which offers online courses in various topics of engineering.
One of those courses aims to help students become self-driving-car engineers. For the purpose of
teaching the students how to build an object detection algorithm, the officially available datasets
seemed too large and too complicated, thus Udacity decided to build their own open-source self-
driving-car dataset with only five categories (car, truck, pedestrian, bicyclist, traffic light). It
consists of approximately 20’000 labeled images with a resolution of 1920x1200 pixels[24].
As proposed in [9], a downscaled version of this dataset was first used to train the network. It
contains all the five categories and images with a resolution of 300 x 480 pixels. After some tests
with this dataset, it became apparent that there are lots of errors and missing objects in the labels.

2.2.4 ”Roboflow” Improvements on the ”Udacity” Dataset

The dataset-provider Roboflow noticed this errors in the Udacity self-driving-car dataset as well.
Errors in 4’986 (33%) of the images were reported[4]. Roboflow improved and re-released the
dataset[5].
To minimize errors from wrong labels in the dataset, the improved version is used in this project.
It is denoted as Udacity/Roboflow dataset. A downscaled version of the images to 512x512 pixels

HSLU Cyrill Durrer 7

Embedded Object Detection with Convolutional Neural Networks BAT FS20

is chosen to limit the complexity of the network. The code written to edit the label formats to fit
the network implementation and to split the dataset into training and validation set can be found
in the appendix, section 12.3.1.

2.3 Performance Metric

2.3.1 Overview

To determine the performance of a deep learning algorithm, there are many possible metrics which
can be used. The choice of the metric depends mainly on the area of application. For the sake
of comparability, there is a standard metric in most fields of application, allowing comparisons
between different solutions for the same or a similar problem. In object detection, the commonly
used metric is mean average precision (mAP)[23]. The computation of the mAP in this project was
implemented from scratch, because the available implementations were mostly suited for the Pascal
VOC or COCO datasets and required a very different format of the ground truth and prediction
data. The source code is in the appendix, section 12.3.2.

2.3.2 Intersection over Union

The first step to measure the performance of an algorithm is to define when it is correct and when
it is not. In object detection, intersection over union (IoU, also known as Jaccard index) is often
used to determine if a predicted bounding box has enough overlap with the ground truth box to
be considered correct. IoU is calculated by dividing the area of the intersection of both boxes by
the area of the union of those boxes:

Figure 2.1: Visual explanation of IoU with an example from the Udacity[24]/Roboflow[5] dataset.
The blue area is the intersection and the blue and the red areas together form the union.

IoU “
Area of Intersection

Area of Union
(2.3)

The green box in figure 2.1 is the ground truth given from the dataset and the yellow box is
predicted by the algorithm. In this example, the IoU value is very high and the prediction is marked
as correct. The most commonly used IoU threshold is 0.5, meaning every predicted bounding box
with the correct class and a IoU above 0.5 is considered a true positive. The higher this threshold
is chosen, the more accurate the prediction boxes have to be. A more detailed explanation is

HSLU Cyrill Durrer 8

Embedded Object Detection with Convolutional Neural Networks BAT FS20

provided in [15]. This metric is also used to remove overlapping boxes predicting the same object
(section 3.1.3).

2.3.3 Confusion Matrix

The confusion matrix is a way of describing the performance of a classifier in a table with four
cells. The horizontal dimension represents the actual (ground truth) values from the dataset and
the vertical dimension the predicted values from the network under test. Both dimensions are split
into positive and negative, where positive refers to the existence of this object or prediction in the
picture and negative to the absence of the respective object or prediction.

P
re

d
ic
te
d

v
a
lu
e

Actual value

p n total

p1
True
Positive

False
Positive

P1

n1
False
Negative

True
Negative

N1

total P N

This table reveals the following information about the algorithm:

• True positive (TP): How many classifications were actually correct

• False positive (FP): How many classifications were wrong

• False negative (FN): How many ground truth objects were not classified

• True negative (TN): How many classifications were correctly predicted as negatives (no ob-
ject)

This is useful for image classification, where for example a network has to decide whether or
not some object is in the image. However, this representation can not be directly used for object
detection, because there are no actual negatives, but rather objects at a certain location and
background everywhere else. A consequence of this is that there are no TN in object detection.
For a prediction to be marked as TP, its bounding box needs to achieve an IoU above a certain
threshold with the ground-truth box and the predicted class has to be correct. If either the class
is incorrect or the predicted bounding box is not fulfilling the IoU criterion, it is marked as FP.
Conversely, when there is a ground truth box which does not match with any predicted box, it
counts as FN. This is done for every class separately.

2.3.4 Precision and Recall

From the values in the confusion matrix, the metrics precision and recall can be calculated.
Precision describes, what percentage of the predicted object is actually correct:

Precision “
TP

TP ` FP
(2.4)

Recall describes what percentage of the ground truth objects in the image were detected:

Recall “
TP

TP ` FN
(2.5)

While both of these metrics describe some quality of the algorithm, no single one of them is a good
measure for performance by itself. A combination of these values has to be applied.

HSLU Cyrill Durrer 9

Embedded Object Detection with Convolutional Neural Networks BAT FS20

2.3.5 Precision-Recall Curve and Average Precision

To calculate the mAP of an algorithm, the computation of the precision-recall curve (PR curve)
is necessary. As the name says, this curve plots precision (mostly on the y-axis) against recall
(mostly on the x-axis). The various pairs of precision and recall values are obtained by using
various confidence threshold values in the NMS stage (section 3.1.3).
The higher the chosen confidence threshold, the higher the precision gets, because only the most
confident of all predictions are evaluated. As a trade-off the recall value will be very low. With a
low confidence threshold the recall value is high, because many predictions will be evaluated and
some of them will most likely be correct. As a consequence of all the wrong predicted boxes the
precision will now be very low.
For every class, the precision values are plotted against the respective recall values for various
confidence thresholds to obtain the PR curve[2][21] (section 4.2.2). The area under this curve is
called the average precision (AP). Because the PR curve is different for every class, so is the AP
value. Figure 4.5 is an example of such a curve with the corresponding AP values in table 4.3.
The chosen confidence thresholds to generate the PR curve are mentioned in section 4.2.2.

2.3.6 Mean Average Precision

The mean of the APs of all different classes in the dataset is computed to obtain the mAP. This
metric finally represents the performance of the algorithm in one number.
It is not completely standardized how many points of the PR curve should be used and how they
should be interpolated. Among the challenges in the field of object detection, different evaluation
metrics like Pascal VOC and COCO (sections 2.3.7 and 2.3.8) have been developed.

2.3.7 Pascal VOC 2007 & 2012 Evaluation Metrics

For the Pascal VOC 2007 evaluation metric, the PR curve needs to consist of 11 values with
confidence thresholds chosen to achieve recall values of 0, 0.1, 0.2, ..., 1.0. The mean of the 11
corresponding precision values represents the AP, and the mean of the AP over all classes (20 in
the case of the original Pascal VOC challenges since 2007) quantifies the algorithm performance
as mAP with Pascal VOC evaluation metric[8].
For Pascal VOC 2012, instead of the interpolated values, the true area under the PR curve has to
be calculated. Both metrics use a constant IoU threshold of 0.5.
In this thesis, the Pascal VOC 2012 evaluation metric is used to calculate the mAP, because it has
proved to be an accurate metric for many projects and it is easier to implement than the COCO
metric which consists of 12 metrics. Also, the widespread use of this metric makes the performance
comparable to other object detectors.

2.3.8 COCO Evaluation Metric

The newer COCO challenge uses 12 metrics for characterizing the performance of an object detec-
tor. Six of those are mAP metrics, the other six are mean average recall (mAR) metrics.
The primary challenge metric evaluates the mAP with 10 different IoU thresholds of 0.5 to 0.95
in steps of 0.05. The mean of these 10 values gives the desired value. This adjustment of the
metric rewards detectors with a better localization, which are predicting the bounding boxes more
accurately.
One of the remaining mAP metrics is a standard Pascal VOC evaluation metric. Another is the
same with another IoU threshold of 0.75 instead of 0.5. The remaining three mAP metrics assess
the performance of the algorithm for detecting small, medium and large objects[7].
The mAR metrics base on a curve where the recall is plotted against various IoU thresholds (from
0.5 to 0.95). The mAR value corresponds to two times the area under this curve. This metric is
not applied in this thesis.

HSLU Cyrill Durrer 10

Embedded Object Detection with Convolutional Neural Networks BAT FS20

3. Single-Shot MultiBox Detector

In this thesis some familiarity with neural networks and especially CNNs is presumed. An
overview of these algorithms and an explanation to many technical terms used here can be found
in [20]. Here is a very short explanation of the most important terms used:

• Tensor: A multi-dimensional matrix (3-dimensional in this thesis)

• Feature map/tensor: Intermediate result in the network after the data is processed by some
layer

• Pooling: A method of downscaling an image/feature map (to a quarter the size in this thesis)

• Weight: Element of the filter tensor whose value is adjusted during training

3.1 Concept and Architecture

Single-Shot MultiBox Detector[18] (SSD) is an algorithm developed for efficient object detection
and localization. The base network used in the original paper is a VGG-16[22] network without the
fully connected layers. In contrast to most other CNN models such as R-CNN[13] and YOLO[19],
SSD is fully convolutional and does not contain any fully connected layers. The predictions of the
network go through a NMS stage to find the most accurate predictions (figure 3.1).

Figure 3.1: SSD architecture, input: 300x300x3 (image source: [18])

3.1.1 Predictor Layers

The predictor layer (detections layer in figure 3.1) is the part where SSD differentiate themselves
from other object detectors like R-CNN or YOLO. In contrast to most other CNN architectures,
the SSD uses feature maps from multiple layers to compute the prediction instead of only using
the last layer. These unconventional connections allow the network to detect objects of various
sizes in the input image more easily than most other approaches. The feature maps of some layers
in the network are forwarded to the predictor layer before applying pooling (figure 4.1).
There are two predictor layers for every feature map used for prediction: one to predict the class and
the other to predict the bounding box offset. The class prediction layer is responsible for assigning
a confidence value to every possible class in a one-hot encoding, representing the probability of this
object being in the corresponding bounding box. The boxes predictor layer estimates the offsets of
the center coordinates as well as the offsets (scaling) of the width and height of the related anchor
box. Figure 4.2 provides a detailed view of the predictor layer in the SSD-7.

HSLU Cyrill Durrer 11

Embedded Object Detection with Convolutional Neural Networks BAT FS20

3.1.2 Anchor Boxes

Every value of every feature map passed on to the predictor layers represents the center of a
perception field on the input image. For every center point, multiple possible anchor boxes are
generated with different height/width ratios and scales, depending on the position of the value in
the feature map and in the network. The bigger the feature map, the smaller the related anchor
boxes.
To map the outputs of the boxes layers (figure 4.2) to coordinates in the image, an anchors tensor
is required. This tensor contains the information of every anchor box in every feature map which
is forwarded to the predictor layer. The anchors tensor only depends on the network architecture
and input image dimensions. It does not depend on the values passed through the network and
thus can be generated as soon as the architecture is fixed. The anchors tensor remains static during
training and inference (grey area in figure 4.2).

3.1.3 Non-Maximum Suppression Stage

Independent of the number of objects in the image, the SSD always predicts the same amount of
bounding boxes and respective class confidence values. Therefore, the shape of the output tensor
(before the NMS stage) is fixed. In the case of the original SSD300 it puts out 8732 predictions
per class. To find the boxes with the highest probability of being true, the output is forwarded to
an NMS stage consisting of three parts: confidence threshold, intersection filter and top-k filter.
To drastically reduce the number of predictions, only those with a confidence level above a certain
threshold are kept. This does not include the confidence for the background class. Because there
are still many overlapping boxes left which predict the same object, all those with an IoU greater
than an IoU overlap threshold of 0.45 with some prediction box with a higher confidence are
discarded as well. This value is taken from the original paper[18]. This is done for every class
separately to prevent the algorithm from discarding for example a pedestrian standing in front of a
car. To limit the maximum number of possible predictions per image, only some predefined number
(k) of predictions with the highest confidence values are kept. This only affects the predictions if
there were more than k predictions left after the intersection filter. Figure 4.3 shows this section
of the SSD-7 in further detail.

3.1.4 Activation Functions

In order to introduce non-linearity into the network, activation functions are used. The outputs of
the convolution are forwarded to the activation function, which computes the output (activation)
being passed on to the next layer.
In classification networks, the softmax function is most common in the output layer. It normalizes
the values into a finite interval to be easily interpreted as probability distribution, which represents
the confidence of the classification. Following this scheme, the classification of the SSD also uses
the softmax function to convert the non-normalized outputs of the class prediction layers to a
probability between zero and one. In the hidden layers, exponential linear units (ELU) serve as
activation functions in the original implementation. For the tests in section 5.2.3, the ELU are
replaced by rectified linear unit (ReLU) activation functions.

HSLU Cyrill Durrer 12

Embedded Object Detection with Convolutional Neural Networks BAT FS20

4. SSD in Floating Point Precision

4.1 SSD-7 with Keras

4.1.1 Network Architecture

In this thesis a stripped down version of the original SSD is used in order to assess if SSD-style
networks can be used for embedded object detection with FPGA-hardware. The chosen network
architecture is called SSD-7 and was originally implemented by Pierluigi Ferrari[9]. It is written
in Keras with TensorFlow as backend.

Figure 4.1: SSD-7 architecture

The SSD-7 consists of only seven convolutional layers in the base network and a convolutional
predictor layer containing four classes layers and four boxes layers (figures 4.1 and 4.2). It contains
213’232 trainable and 672 non-trainable parameters, so it is fairly small for an object detection
network.

Figure 4.2: Detailed view of the SSD-7 class & box predictor layers

The layers conv4-7 are directly used for prediction (figure 4.2). The anchors layers in the

HSLU Cyrill Durrer 13

Embedded Object Detection with Convolutional Neural Networks BAT FS20

grey area only need to be calculated once and remain static as long as there is no change in the
network architecture or input image size. The arrows from the box offset tensors only indicate
that the anchors layers depend on the size of these tensors, not on the actual data during training
or inference.
For every feature tensor passed on to the predictor layers there is a convolutional layer for class
prediction and another for the bounding box offsets. There are four corresponding anchor boxes
for every value in the feature map, applying the aspect ratios 2, 1, 0.5 and a second, bigger box
for the aspect ratio 1. Before being reshaped, the dimensions of the classes tensors correspond
to the size of the input feature map with a depth of 24, because there are six classes (including
background) for each of the four anchor boxes. This tensor gets reshaped into a list of all the
possible anchor boxes with a channel for every class and then concatenated with the tensors of the
other classes layers. The same is done with the box offset predictions, but instead of six classes
there are four offset values, leading to a depth of 16 before the reshape.
In order to convert the confidence predictions to a value between zero and one, a softmax activation
function is applied after the concatenation of the class predictions. After this, the resulting classes
tensor is concatenated with the box offset tensor and the static anchors tensor (section 3.1.2). This
forms the predictions tensor containing all relevant information about the prediction confidences
and prediction box coordinates. The predictions tensor is then passed on to the NMS stage.

Figure 4.3: Detailed view of the SSD-7 NMS stage

The NMS stage of the SSD-7 can be used with various confidence threshold values. To determine
the mAP-score, many different thresholds have to be used. As explained in section 4.3.3, a different
threshold for each class has been used in order to get decent results. For the intersection filter,
the IoU value has to exceed 0.45 to be regarded as overlapping. Lastly, the top-k filter is set to
k “ 200, ignoring the lowest confidence predictions if there happen to be more than 200 for a
certain image.
In figures 4.1, 4.2 and 4.3, the batch size component of the tensor shapes has been omitted to
improve readability.

4.1.2 Hyperparameters

Table 4.1 shows the hyperparameter configuration of SSD-7.

Input image dimensions 512 x 512 x 3
Optimizer Adaptive moment (Adam)
Classification loss function Logarithmic loss
Localization loss function Smooth L1 loss
Aspect ratios [0.5, 1, 2]
Scaling factors [0.08, 0.16, 0.32, 0.64, 0.96]
Normalize coords true
NMS: Confidence threshold various values
NMS: IoU overlap threshold 0.45
NMS: k 200

Table 4.1: Hyperparameters overview

HSLU Cyrill Durrer 14

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Most of the hyperparameter choices were left as implemented by Pierluigi Ferrari[9] and they
correspond to the settings used in the original paper[18], adapted for the smaller version of the
network.

4.1.3 Training

The network was trained on Machine 2 (section 1.2.3) due to the better performance. It took
about eight minutes per epoch leading to a total of 24 hours training time. After 176 epochs the
early stopping mechanism was triggered because there was no more improvement of the perfor-
mance on the validation set. Some tests with a less sensitive early stopping and therefore more
training epochs did not improve the performance. This network state serves as the ”original” for
all subsequent tests except for the ReLU implementation (section 5.2.3).

training images 9239
validation images 4000
Initial learning rate 0.001
epochs (early stopping) 176

Table 4.2: Training parameters overview

Reduce learning rate on plateau: This function automatically reduces the learning rate,
when the training is stuck at a certain validation loss value. In this case, the learning rate was
multiplied by a factor of 0.2 whenever there was no progress (ă0.001) for eight epochs in a row.

Early stopping: This function interrupts the training when no more decrease of the validation
loss value is detected. In this implementation, training stopped automatically when no decrease of
the validation loss occurred for 10 epochs in a row.

4.2 Tests and Results

4.2.1 Prediction Observations

Out of the five classes, cars are much better detected by the network than trucks, bicyclists, pedes-
trians and traffic lights. This is most likely a consequence of the very unbalanced dataset (figure
4.6). Tests proved that the other classes get detected as well, but with a much lower confidence.
More on that in section 4.3.3.

HSLU Cyrill Durrer 15

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Figure 4.4: Predictions of the SSD-7 on an image of the Udacity[24]/Roboflow[5] dataset

The processing of one image on machine 1 (section 1.2.3) took about 30ms, which corresponds
to a rate of approximately 33 frames per second (fps).

4.2.2 Prediction Performance

The performance of the trained network was measured based on Pascal VOC 2012 mAP[8] (section
2.3.7). For this computation the 4000 images of the validation set were used. The IoU threshold
is set to 0.5 as specified in Pascal VOC.
To compute the mAP, precision and recall values for each class have been determined at 14 different
confidence levels reaching from 0.01 (high recall) to 0.999999 (high precision). From these values
the PR curves were generated (figure 4.5).

HSLU Cyrill Durrer 16

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Figure 4.5: Precision-recall curves of all classes

car truck pedestrian bicyclist light mAP

0.578 0.481 0.096 0.123 0.261 0.308

Table 4.3: Average precision values of the different classes and resulting mAP

The average precision (AP) of each class corresponds to the area under the PR curve. The
mean of these AP-values is the performance metric mAP (table 4.3).

4.3 Interpretation

4.3.1 Achieved Performance

The achieved performance of mAP=0.308 is far from the performance of the best state-of-the-art
networks tested on the Pascal VOC dataset, which achieve mAP values of 0.8 and higher. On the
more complex datasets such as COCO, even the winning detectors hardly exceed 0.5, most of them
only achieve about 0.25[14]. This shows that the mAP does strongly depend on the dataset. The
Udacity/Roboflow dataset is rather simple, consisting of only five different classes, and the pictures
are always traffic situations. This suggests that a high mAP value could be achieved. However, a
glimpse into the dataset shows that, even though it has already been improved by Roboflow, there
are still many inaccurate, missing, wrong or redundant labels in the dataset. Furthermore, many
labels mark cars and other object in great distance, which are, on the downscaled image, hard to
recognize even for a human. All this together makes it very difficult for an object detector trained
and tested on this dataset to achieve a high mAP.
That some of the best object detectors score only about 0.25 on the COCO dataset also shows that
this is already a decent performance. Compared to a classification task with five classes, where

HSLU Cyrill Durrer 17

Embedded Object Detection with Convolutional Neural Networks BAT FS20

random guessing already achieves an accuracy of 0.2, object detection is much harder. Random
guessing of bounding boxes and classes would not provide many correct predictions. To achieve
an mAP of 0.3 the detector needs to recognize the features quite well in order to correctly predict
the class and position of many objects (figure 4.4).
The performance of the SSD-7, which is a much simpler and computationally less expensive net-
work than the state-of-the-art, will most likely be sufficient for some applications in industry and
robotics. However, it should not be used for safety-critical applications like autonomous driving
or other tasks which require very accurate detections.

4.3.2 Class Performance Difference

The results of the AP-tests reveal big differences in the performance for the five classes (table 4.3).
This is caused primarily by the non-balanced nature of the used dataset (figure 4.6).

Figure 4.6: Class balance of the Udacity self-driving car dataset[5]

The under-representation of some classes leads to very low prediction confidences. To address
this problem, a class-dependent confidence threshold was implemented (section 4.3.3). Due to the
fact that the mAP-metric includes predictions at many different confidence levels, this improvement
has no effect on the achieved mAP score. In this thesis, all traffic light classes distinguished in
figure 4.6 are treated as one to keep the number of classes small and because there is not enough
data for some of these classes.
With an AP score of 0.578, the object detector works best for detecting cars, followed by 0.481
for trucks (table 4.3). In the dataset, by far the most occurring class is cars, so the network has
the most examples of cars to learn from. Because trucks have very similar optical features as
cars, they get detected almost as well. In contrast, the algorithm has the most problems detecting
pedestrians (AP: 0.096) and bicyclists (AP: 0.123). Even though there are more than 10’000 labeled
pedestrians in the dataset, a glimpse in the images shows that they are sometimes very hard to
see even for a human. This is caused by the down-scaled resolution of the images as well as bad
light situations and partially hidden locations. Furthermore, to differentiate between pedestrians
and bicyclists is obviously very challenging for the network, because in many cases the bicycles are
very inconspicuous.
The AP scores show that the network does not reach a level to be applied in the area of self-
driving cars, but considering the very small and simple architecture it does a decent job, especially
in detecting cars and trucks.

4.3.3 Class-Dependent Confidence Thresholds

The original code used the same confidence threshold to suppress improbable detection boxes for
every class. When using a high confidence threshold (ą0.5) almost only cars are detected. Lowering
the confidence threshold (0.1) revealed that there are many correct detections of other classes than

HSLU Cyrill Durrer 18

Embedded Object Detection with Convolutional Neural Networks BAT FS20

cars, but with lower confidence. To counteract this, a class-dependent confidence threshold is
introduced. The values for these class-dependent thresholds were found in an empirical way by
choosing a value slightly above the confidence of most wrong detections. Classes appearing less
in the dataset generally get lower confidences, even though the respective predictions are often
correct.

car truck pedestrian bicyclist light

confidence threshold 0.8 0.7 0.2 0.15 0.2

Table 4.4: Applied confidence thresholds for each class

An even better way to determine the ideal confidence threshold for every class would be to
derive it from the PR curve (figure 4.5). One possibility is to determine the datapoint with the
maximum value for precision ˚ recall and take the respective confidence threshold. This method
achieves a good balance between precision and recall. If the application needs a high recall, because
no object should be missed, but some wrong detections do not matter much, a value with high
recall can be chosen. Vice-versa, if every prediction needs to be true, but some missing predictions
are acceptable, a value with high precision is suitable.
For the computation of the mAP of an algorithm, this choice of confidence threshold has no
relevance because multiple confidence thresholds are applied. However, when applying the object
detector to a certain task this choice is very important.

HSLU Cyrill Durrer 19

Embedded Object Detection with Convolutional Neural Networks BAT FS20

5. SSD for Embedded Systems

5.1 Binary Approximated Neural Networks

5.1.1 Choosing the Number of Binary Filters

To run this object detector on an embedded hardware it is converted into a form which is suited for
FPGAs. The BinArray[11] method is applied to ensure that the weight tensors are converted to a
suitable form for the HA. In this form, the weight tensors of the network layers are approximated
by a linear combination of M binary tensors. The larger M is chosen, the more accurate the
approximation gets. The downside of a large M is the increased hardware consumption. The main
benefit of choosing M small is the possibility to stack them in the FPGA due to low hardware
usage. This allows a parallelization which greatly increases the computation speed of the inference.
The goal when analyzing the binary approximated convolutional neural network (BACNN) is to
find the minimal M for which the prediction performance (in this thesis measured by the mAP) is
sufficiently close to the performance achieved by the original CNN.

5.1.2 Binary Retraining

In preceding works such as [11], binary retraining has proven to be a very effective method to
improve the performance of the binary approximated network. Binary retraining means training
the binary approximated network for some more epochs on the dataset to adjust the approximated
weights and therefore reduce the decrease in performance, especially for small M . Like the training
of the floating point SSD, retraining of the BA-SSD was executed on machine 2.

5.1.3 Change of Activation Function

SSD-7 uses ELU as activation functions for the convolutional layers, except for one softmax layer
to normalize the classification confidence to a value between zero and one. The fact that the ELU
requires much more computational effort indicates that it would be better to use another activation
function instead. The most efficient activation function would be the ReLU, which has proven to
be very effective for neural networks[1]. Furthermore, the hardware accelerator framework only
supports ReLU in the current state.

5.2 Tests and Results

5.2.1 Without Retraining

To determine how much the mAP drops when the CNN is converted to a binary form and to
estimate the optimal choice for M , seven BA-SSDs with values M “ r2, 3, 4, 5, 6, 7, 8s are generated
and the respective mAP computed.

HSLU Cyrill Durrer 20

Embedded Object Detection with Convolutional Neural Networks BAT FS20

M 2 3 4 5 6 7 8 original

mAP 0.005 0.045 0.147 0.264 0.294 0.286 0.295 0.308

Table 5.1: Performance (mAP) of the BA-SSDs without retraining

Figure 5.1: Performance (mAP) of the BA-SSDs as a function of M

Figure 5.2: AP values of the different classes as a function of M

HSLU Cyrill Durrer 21

Embedded Object Detection with Convolutional Neural Networks BAT FS20

5.2.2 With Retraining

To assess the effectiveness of retraining for this network, all the BA-SSDs with M “ r2, 3, 4, 5, 6, 7, 8s
are retrained for 5, 10, 25 and 50 epochs. For the retraining, the initial learning rate was reduced
from 0.001 to 0.0001 to prevent the learning algorithm from getting stuck. This is a manual way to
correct for the learning rate reduction already applied when training the original network (section
4.1.3).

M 2 3 4 5 6 7 8

no retraining 0.005 0.045 0.147 0.264 0.294 0.286 0.295
5 epochs 0.191 0.272 0.293 0.294 0.296 0.296 0.295
10 epochs 0.204 0.276 0.294 0.300 0.301 0.297 0.299
25 epochs 0.216 0.274 0.301 0.299 0.307 0.301 0.306
50 epochs 0.255 0.284 0.303 0.299 0.308 0.306 0.307

Table 5.2: Performance (mAP) of the BA-SSDs with retraining

Figure 5.3: Performance (mAP) of the retrained BA-SSDs as a function of M

5.2.3 ReLU as Activation Function

To investigate the performance change, the same network has been trained using ReLU instead of
ELU activation functions.

car truck pedestrian bicyclist light mAP

0.589 0.505 0.093 0.106 0.253 0.309

Table 5.3: Average precision values of the different classes and resulting mAP with ReLU

With ReLU as activation functions the algorithm in floating point precision achieved an even
higher mAP of 0.309 (table 5.3) than with ELU as implemented originally (table 4.3). The results
of the binary approximated models using ReLU are shown in table 5.4 and figure 5.4.

HSLU Cyrill Durrer 22

Embedded Object Detection with Convolutional Neural Networks BAT FS20

M 2 3 4 5 6 7 8

no retraining 0.015 0.146 0.268 0.273 0.304 0.306 0.308
5 epochs 0.214 0.280 0.295 0.294 0.307 0.308 0.299
10 epochs 0.221 0.287 0.294 0.300 0.301 0.297 0.299
25 epochs 0.216 0.274 0.301 0.299 0.307 0.301 0.306
50 epochs 0.255 0.284 0.303 0.299 0.308 0.306 0.307

Table 5.4: Performance (mAP) of the retrained BA-SSDs with ReLU activation functions

Figure 5.4: Performance (mAP) of the retrained BA-SSDs as a function of M with ReLU activation
functions

5.3 Interpretation

5.3.1 Without Retraining

Figure 5.1 shows the performance in mAP of the seven BACNN models without retraining. With
M “ 6 the performance of the BACNN (mAPM“6 “ 0.294) is close to the performance of the
original CNN (mAPoriginal “ 0.308). Even for M “ 5 (mAPM“5 “ 0.264) the reduction is rather
small, but still significant.

5.3.2 With Retraining

Figure 5.3 shows that retraining efficiently improves the performance of the binary approximated
models. All the retrained models reach a higher mAP than the approximated model without
retraining. mAPM“6 “ 0.308 and mAPM“8 “ 0.307 still give the best results, but mAPM“4 “

0.303 achieves almost the same performance. The minimum acceptable mAP depends on the
application. For the hardware implementation estimations in chapter 6, the number of binary
filters is set to M “ 4 because a decrease in mAP of 0.005 is acceptable for this project.

HSLU Cyrill Durrer 23

Embedded Object Detection with Convolutional Neural Networks BAT FS20

5.3.3 ReLU as Activation Function

Figure 5.4, where the network performance is measured with ReLU as activation function, shows
even slightly better results than the original network with ELU (figures 5.3 and 5.4). This indicates
that the network will perform as well with ReLU as activation function, which has a lower com-
putational complexity and is already implemented in the Low-Cost CNN Accelerator framework.

HSLU Cyrill Durrer 24

Embedded Object Detection with Convolutional Neural Networks BAT FS20

6. Hardware Implementation

6.1 Hardware Accelerator Concept

To achieve the goal of executing an object detector algorithm on an embedded system with a
speed that allows real-time applications, a combination of processing system (PS), in this case an
ARM-CPU, and hardware accelerator (HA) implemented on a programmable logic (PL) is used.
The PS manages the input data stream (e.g. a video stream from a camera) as well as the output
data, the NMS stage and the control of the HA[11]. The PL computes all the convolutional layers
and is able to access the memory directly to fetch the required data and write the results back.

Figure 6.1: BinArray System: a combination of PS (ARM-CPU) and HA implemented on a PL
(image source: [11])

An AXI bus connects the PS and the PL, enabling the PS to send instructions to the HA.
The data mover of the HA has direct memory access (DMA). This means it is directly connected
to AXI bus as master and can therefore access the external memory (DDR3) without requiring
computation time of the CPU. This is the architecture of the target hardware (Xilinx Zynq-7000)
introduced in section 1.2.4.
The systolic array (SA) consists of a collection of processing elements (PEs). The PEs are arranged
in 2-dimensional grid with height Darch and width March. The size of the SA must be selected
to match the network architecture. If March is smaller than the number of binary arrays used for
approximation (M), it will need multiple systolic unit cycles (SUC) to compute a certain layer. In
this thesis March is chosen to be equal to M in order to maximize performance. The SA height

HSLU Cyrill Durrer 25

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Darch determines how many convolution filters can be applied simultaneously. If Darch is equal
to or greater than the number of filters, only one SUC is need for the computation. The highest
number of filters in the SSD-7 network is 64 and the lowest is 16, accordingly it is not possible
to increase the performance by choosing Darch lower than 16 or higher than 64. Because of the
lower hardware consumption, a small Darch allows more parallel SAs implemented in the HA. The
downside of choosing Darch to be low is the trade-off in speed, because there are multiple SUCs
need for some layers.

6.2 Hardware Constraints

On every FPGA chip only a limited number of logical components can be implemented. These ba-
sic components are block RAM (BRAM), digital signal processor (DSP), flip-flop (FF) and lookup
table (LUT). As explained in section 1.2.4, the Xilinx XC7Z045 and XC7Z010 are used in this
thesis.

Resource Type XC7Z045 (Mid-Range) XC7C010 (Low-End) Fraction [%]

BRAM 545 60 11.01
DSP 900 80 8.89
FF 437200 35200 8.05

LUT 218600 17600 8.05

Table 6.1: Available hardware resources of a mid-range (XC7Z045) and a low-end (XC7Z010)
FPGA

These numbers originate from the official datasheet provided by Xilinx (appendix, section 12.2).

6.3 Hardware Consumption Estimation

To find the optimal configuration, the resource requirements for five different values of Darch are
estimated. With the information about the available resources in the target hardware (table 6.1)
the maximum number of SA implementations NSA´max is determined. Formulas from [16] are
used to compute the hardware consumption of an SA depending on the configuration of March and
Darch. BRAM and DSP only depend on March and therefore remain constant when March is left
unchanged.

Darch March BRAM [%] DSP [%] FF [%] LUT [%] NSA´max (Mid-Range)

16 4 0.73 0.44 0.89 2.77 36
24 4 0.73 0.44 1.13 3.97 25
32 4 0.73 0.44 1.37 5.17 19
48 4 0.73 0.44 1.86 7.57 13
64 4 0.73 0.44 2.34 9.98 10

Table 6.2: Hardware usage of the mid-range FPGA (XC7Z045) for different SA heights Darch

More detailed tables of these estimations are provided in the appendix, section 12.2. The
estimations do not include the additional BRAM consumption from the FBUF implementation
(section 6.4.2).

HSLU Cyrill Durrer 26

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Darch March BRAM [%] DSP [%] FF [%] LUT [%] NSA´max (Low-End)

16 4 6.67 5.00 11.07 34.44 2
24 4 6.67 5.00 14.07 49.35 2
32 4 6.67 5.00 17.07 64.26 1
48 4 6.67 5.00 23.07 94.08 1
64 4 6.67 5.00 29.07 123.90 0

Table 6.3: Hardware usage of the low-end FPGA (XC7Z010) for different SA heights Darch

6.4 Inference Speed Estimation

6.4.1 Hardware Accelerator

Table 6.2 shows the estimated hardware usage of one systolic array relative to the available resources
on the mid-range hardware. The lower this percentage is, the more SAs can be implemented to
work in parallel (NSA) and therefore speed up computation. The results show that LUTs are the
limiting resource in this case and therefore define how many SA can be implemented. The formulas
used to estimate the inference speed on the HA are derived from [10].

Inferences / s
Darch March NSA “ 1 NSA´max (Mid-Range) NSA´max (Low-End)

16 4 2.76 99.23 4.86
24 4 3.54 85.15 6.54
32 4 4.77 87.24 4.77
48 4 6.22 78.96 6.22
64 4 7.29 72.93 -

Table 6.4: Resulting inference speed for different SA heights Darch with one SA as well as with
the maximum number of SA to fit into the mid-range (XC7Z045) or low-end (XC7Z010) FPGA

Figure 6.2: Inference speed as a function of the relative hardware usage (LUTs) of the mid-range
hardware (XC7Z045), for three SA height values Darch when NSA (coloured numbers) is increased
from one to NSA´max

HSLU Cyrill Durrer 27

Embedded Object Detection with Convolutional Neural Networks BAT FS20

In figure 6.2 the three coloured graphs show the relation between inference speed and LUT
usage for different values of Darch. Every marked point on the graph from left to right represents
one more implementation of an SA (e.g. NSA) up to the maximum possible. The x-axis shows the
LUTs used as a percentage of the LUTs available in the mid-range hardware (XC7Z045).
When working with the chosen target mid-range hardware, this figure is important when deciding
which inference speed needs to be achieved and how many hardware resources have to be utilized.
It also shows which values have to be chosen for Darch and NSA. Table 6.2 shows that there are
plenty of the other hardware resources (FF, DSP, BRAM) available to implement other applica-
tions on the PL.
Figure 6.3 holds the relevant information to determine the possible inference speed from the avail-
able hardware resources in absolute numbers. Section 7.2 explains how to apply this by describing
concrete examples.

Figure 6.3: Inference speed as a function of absolute hardware usage, split into the four basic
hardware resources

For every combination of compatible CNN and FPGA these values can be computed, allowing
the user to accurately choose the amount of hardware resources to give to the accelerator to achieve
a required inference rate. This figure does not include the additional BRAM consumption for the
implementation of the FBUFs.

HSLU Cyrill Durrer 28

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Figure 6.4: Processing time of the HA per convolutional layer for Darch values 16, 32 and 64

To investigate the impact of each layer on the processing time as well as the effect of different
Darch values, figure 6.4 provides a graphical overview. It shows that most of the processing time
(ą66%) is consumed by the first two convolutional layers. This is caused by the large dimensions
of the involved feature tensors. Furthermore the ability of higher values of Darch to process layers
with up to 64 filters simultaneously can be observed. This accelerates for example the computation
of the layers conv2 and conv3 with 48 respectively 64 filters. Optimization efforts will be much
more effective on the early layers. The later layers have little influence on the inference speed.

6.4.2 Feature Buffers and Memory Access

In many cases, memory access can be an issue for real-time applications because it is rather slow
compared to other operations. To prevent the need for writing the feature tensor back to the
memory after every layer, the HA provides feature buffers (FBUF) to store the feature tensors
close to the SAs, where they have fast access to it[11].
There are two FBUFs in the HA. The first one is the global FBUF, which is implemented as
ping-pong buffer. This means it holds the input as well as the output tensor and can be accessed
simultaneously. To be able to hold both tensors it needs to provide enough memory. Through the
control unit, the PS tells the HA which data to load. The data mover then accesses the DDR3-
memory and loads the image or feature tensor into the global FBUF. The data mover has direct
access to the memory via the AXI-bus and does not require CPU time for this operation. The
ping-pong buffer (global FBUF) allows the data mover to fetch the next image while the SAs are
busy. The SAs write the result back to the FBUF without interfering with the data mover already
filling in the next tensor. To store the values which the SAs working in parallel need to perform
their operations, there are local FBUFs embedded in every SA. The feature tensor to be processed
is split into various tiles and distributed among all the SAs used for the operation.
The highest consumption of FBUF memory occurs when the SAs have finished computing the first
convolutional layer and store the resulting feature tensor T1 in the global FBUF. Then the global
FBUF holds the input and the other part of the global FBUF holds T1. All the local FBUFs
together also hold T1. The dimensions of the feature tensors are shown in figure 4.1. Every data

HSLU Cyrill Durrer 29

Embedded Object Detection with Convolutional Neural Networks BAT FS20

element in the network consumes 1 byte.

sizepInput Imageq “ 512 ˚ 512 ˚ 3B “ 786.432 kB (6.1)

sizepT1q “ 64 ˚ 64 ˚ 32B “ 2.097MB (6.2)

Maximum FBUF memory consumption “ sizepInput Imageq ` 2 ˚ sizepT1q “ 4.98MB (6.3)

The mid-range FPGA has enough BRAM to store up to 2.4 MB (19.2 Mb) (appendix, section
12.2). In the current architecture of the HA this is not sufficient. For the low-end FPGA with
only 262.5 kB (2.1Mb) it is even more problematic. To be able to accelerate a network containing
tensors this big, a strategy to split the processing into smaller tasks has to be integrated. For
this to work, there could be an overhead of time for memory access. The extent of this additional
computation time is assessed in section 6.4.3.
Because in the SSD architecture some feature maps bypass other convolutional layers, they need
to remain in the FBUF. The maximum amount of occupied FBUF memory by these additional
connections can be calculated from the sizes of the feature tensors (equation 6.4). The detailed
equations are in the appendix, section 12.1.

sizepT4q ` sizepT5q ` sizepT6q ` sizepT7q “ 343.04 kB (6.4)

This is much less than the maximum usage calculated in equation 6.3 and should fit into the avail-
able BRAM of the mid-range, but not in the low-end FPGA. To store the feature tensors for some
cycles and process them afterwards, the HA architecture has to be adjusted. At the moment it
only supports direct reuse of the stored tensor for the next computation.

6.4.3 Reducing Memory Requirement: Tiling

To address the problem discussed in section 6.4.2, the biggest feature tensor has to be tiled into
four smaller tensors. This ensures, that there is sufficient BRAM on the mid-range hardware to
store the results and inputs of the affected layers conv1 and conv2. As a consequence of this
tiling, the layers conv1 and conv2 have to be executed four times instead of once. Because the
tensors to be processed are four times smaller, there is no relevant computation overhead for the
SAs (appendix, section 12.2). The overhead occurring due to overlap sections at the edge of the
tiles is negligibly small. Some additional time consumption could occur due to the need to split
the image, read every tile separately to the FBUF and write the results back to the memory. The
extent of this additional time depends largely on the speed of the data mover and the AXI bus.
The ping-pong design of the FBUF enables the data mover to load and store data while the SAs
are busy. Because the problematic layers are also the ones which take longest to process in the
SAs (figure 6.4), the data mover has more time for its task. If the load and store operations can
be executed in the same or less time than the SAs need to process the data, there is no remarkable
decrease in inference speed for the tiling.

6.4.4 CPU Workload

Even though most of the necessary operations can be done by the HA, some tasks need to be
handled by the CPU. While the HA can execute all the convolutional layers including the classes
and boxes layers, the PS needs to manage the input images and provide the memory addresses to
the HA, send computation instructions to the control unit of the HA and deal with the output of
the last convolutional layers of the network.
The layers after the convolutional layers are mostly reshape and concatenation layers (figure 4.2).
Because there is no computation involved in these layers, by accessing the memory in a certain
pattern this can be done without any additional clock cycles. To normalize the class prediction into
a confidence value between zero and one, a softmax layer is needed. The softmax requires some
CPU time. If this operation turns out to be too computationally expensive, this cost could be de-
creased by filtering the class predictions before applying the softmax. A possible way to implement
this filter is by comparing the raw class prediction values to the value of the background class.

HSLU Cyrill Durrer 30

Embedded Object Detection with Convolutional Neural Networks BAT FS20

For example, if the value for the background class is more than twice as big as the highest class
prediction value, the prediction is discarded. This comparison would require much less processing
than applying the softmax to all the 21’760 predictions.
At the end of the network, the best prediction boxes are selected by the NMS stage. Of all the
21’760 possible boxes only those with a high confidence value contain relevant information, so
only the predicted boxes with a confidence value higher than a chosen confidence threshold are
passed on. These predictions will still contain multiple overlapping boxes detecting the same object,
therefore all boxes with an IoU greater than a chosen IoU threshold (0.45) with a higher-confidence
prediction box are discarded.
Finally, the predicted bounding box offsets need to be converted to prediction boxes using the
constant anchors tensor. This gives relative coordinates which then have to be transformed into
absolute coordinates in pixels. For every single one of the 21’760 predictions exists a corresponding
anchor box which can be computed from the structure of the network. Every prediction further
delivers a set of four offset values: center coordinate offsets as well as width and height offsets[18].
With the four coordinates of the anchor box, the four offset values and the resolution of the input
image, the absolute coordinates of the predicted box can now be determined.

cxprediction,rel “ ∆cx ˚ wanchor ` cxanchor (6.5)

cyprediction,rel “ ∆cy ˚ hanchor ` cyanchor (6.6)

wprediction,rel “ e∆w ˚ wanchor (6.7)

hprediction,rel “ e∆h ˚ hanchor (6.8)

rcxabs, cyabs, wabs, habss “ rcxrel, cyrel, wrel, hrels ˝ rximage, yimage, ximage, yimages (6.9)

To get the relative coordinates of a predicted bounding box with the offset taken into account,
four multiplications, two additions and two exponential functions are required (equations 6.5 - 6.8).
To convert the relative to absolute coordinates, four more multiplications have to be carried out
(equation 6.9).
To suppress overlapping boxes in the NMS stage, the IoU value of two boxes have to be calculated
using the following equations:

wIntersection “ minpcx1 `
w1

2
, cx2 `

w2

2
q ´maxpcx1 ´

w1

2
, cx2 ´

w2

2
q (6.10)

hIntersection “ minpcy1 `
h1

2
, cy2 `

h2

2
q ´maxpcy1 ´

h1

2
, cy2 ´

h2

2
q (6.11)

AIntersection “ wIntersection ˚ hIntersection (6.12)

AUnion “ w1 ˚ h1 ` w2 ˚ h2 ´AIntersection (6.13)

IoU “
AIntersection

AUnion
(6.14)

If the division by two is executed as shift operation, the computational cost of an IoU is 12
additions/subtractions, eight shift operations, four min/max operations, three multiplications and
one division. With data reuse, such as keeping the area of the box with higher confidence, some
of these operations could be avoided.
To determine if this is a bottleneck for the inference speed, a worst-case scenario is assumed.
If there are 20 objects in the image, and for each object there are 20 overlapping boxes with a
confidence higher than the confidence threshold, 400 boxes have to be processed. All the boxes
predict the same class, so every overlap has to be taken into account. Converting the box offsets
of 400 boxes into relative coordinates requires 800 exponential operations, 800 additions and 1600
multiplications.
To find the globally maximum box, a greedy algorithm is applied in the NMS stage. This algorithm
compares a prediction to all the other remaining predictions of the same class, always keeping the
one with maximum confidence and discarding those with lower confidence but a too high IoU value.
The first prediction has to be compared to all other predictions. This step reveals the first local

HSLU Cyrill Durrer 31

Embedded Object Detection with Convolutional Neural Networks BAT FS20

maximum prediction and discards 19 overlapping predictions. The next prediction is found after
the computation of 380 IoU values and so on.

IoU operations “
19
ÿ

i“0

400´ 20 ˚ i “ 4200 (6.15)

This results in 4200 IoU computations. To achieve this, another 50’400 additions, 33’600 shift oper-
ations, 25’200 min/max operations, 12’600 multiplications and 4200 divisions have to be computed.
For every IoU computation the greedy algorithm executes one min/max operation to compare the
IoU values and another to compare the confidences, resulting in 8400 more min/max decisions. The
additional computations to choose the next bounding boxes and store the maximum predictions at
the end are neglected in this estimation. To convert the relative coordinates of the remaining 20
predictions into absolute coordinates, 80 multiplications are needed. Table 6.5 shows the overall
required operations per image for this worst-case scenario.

operation conf. threshold rel. coords intersection filter abs. coords total
additions 0 800 50’400 0 51’200
shift operations 0 0 33’600 0 33’600
min/max operations 21’760 0 25’200 0 46’960
multiplications 0 1’600 12’600 80 14’280
divisions 0 0 4’200 0 4’200
exp. operations 0 800 0 0 800

Table 6.5: CPU operations per image in a worst-case scenario

CPU timeperInference “ p511200`331600`461960q˚1ns`p4200`800q˚10ns “ 181.76µs (6.16)

HA time per Inference “
1

99.23
s “ 10.08ms (6.17)

CPU bottleneck margin prelativeq “
PL time per Inference

CPU time per Inference
“ 55.46 (6.18)

Equation 6.16 shows the estimated computation time for all these operations on a CPU with
1 GHz clock frequency. This is the speed of the ARM Cortex embedded in the target hardware.
For this estimation it is assumed that the basic operations (addition/subtraction, shift, min/max
and multiplication) can be computed in one clock cycle (1ns) and the more complex operations
(division and exponential) in ten clock cycles (10ns). The operations to discard images (e.g. change
a pointer in a list) and to load the prediction data from the memory are neglected. If the resulting
computation time is longer than the time the HA needs for one inference, the NMS computations
on the CPU become a bottleneck.
Equation 6.17 shows the minimal time the HA requires when implemented on the mid-range
hardware and equation 6.18 the resulting relative margin.

6.5 Interpretation

6.5.1 Real-Time Capability

The question if this system is capable of achieving an adequate inference speed for real-time
applications is of central importance. Depending on the application, the minimum inference speed
necessary can be very different. Nevertheless, it can be said that the results (table 6.4), indicating
a possible inference speed of up to 99.23 inferences per second, will most likely be enough for most
tasks. If a lower image processing speed is sufficient, NSA can be set lower to reduce hardware
usage on the FPGA allowing to choose a cheaper hardware.

HSLU Cyrill Durrer 32

Embedded Object Detection with Convolutional Neural Networks BAT FS20

6.5.2 Mid-Range vs. Low-End

The results show a remarkable difference in inference speed between the two target hardware. Due
to the big gap in available resources (table 6.1), the maximum number of parallel implementations
NSA can only be one or two. For Darch “ 64 not even a single implementation is possible because
the hardware does not provide enough LUTs.
With a maximum possible inference speed of 6.54 inferences per second (table 6.4) on the low-end
target hardware, this can still be useful for many applications for which reaction time is not as
critical.

6.5.3 Feature Buffer Bottleneck

Because the low-end hardware provides less BRAM than the mid-range, the tiling operation out-
lined in section 6.4.3 must be applied with even more tiles. This increases the number of memory
operations further, which could limit the inference speed. The time consumption of memory oper-
ations needs to be analyzed and compared to time the SAs need to compute the respective layer
(section 7.4.2).

6.5.4 CPU Workload Bottleneck

The result of the estimation (equation 6.18) shows that even in the worst-case scenario the com-
putations required in the NMS stage only consume about one 55th of the available time for the
fastest inference speed on the mid-range hardware. This margin should be sufficient even if the
computation takes longer than estimated due to effects not taken into account. The other tasks
which have to be performed by the CPU, such as managing the input stream from a camera and
controlling the HA, are neglected in equation 6.16.
In case the NMS computation turns out to limit the inference speed, for example because a very
slow PS is combined with a big PL, the problem can be addressed by increasing the confidence
threshold in the NMS stage. This reduces the number of predictions to process, drastically de-
creasing the computational effort on the PS. If chosen optimal, the higher confidence threshold
does not cause a worse performance (precision and recall). If the threshold is set too high, relevant
predictions are discarded, reducing the performance of the object detector. An optimum value for
the confidence thresholds per class could be determined before implementing the system on an em-
bedded hardware by performing tests with different values and comparing the resulting precision
and recall values or by using the PR curve (section 4.3.3). Another way to minimize the problem
is to use a hardware with a faster PS.

HSLU Cyrill Durrer 33

Embedded Object Detection with Convolutional Neural Networks BAT FS20

7. Conclusion

7.1 Embedded Object Detector

Even though the object detector has not been implemented on the embedded hardware, the results
presented in this thesis indicate that such an implementation would be possible. It is further shown
what performance is to be expected from such a system and what the limitations might be. There
are still some uncertainties in the estimations of this work, but most major challenges of such an
implementation are addressed.
Chapters 3 and 4 describe the specific object detector network, on which all the results in this
thesis are based. Even though some adjustments and changes would be required, similar results
with comparable object detector networks of a similar complexity can be expected. The founda-
tion is laid for more complex networks which achieve better mAP scores, but at the cost of higher
hardware resource consumption or lower inference speed.
Chapter 5 explains the conversion to a binary form and provides the necessary results to prove the
binary approximated network to behave very similar to the original. When one filter in floating
point precision is approximated by only four binary filters, the mAP decrease from 0.308 to 0.303
(with retraining) is very small. With six binary filters the mAP is almost exactly the same as
the original (0.308). The fact that this form of binary representation works very well with image
classifiers[11] as well as object detectors supports the assumption that it can be used for other
tasks as well.
In chapter 6 the possible inference speed of the object detector on a mid-range as well as a low-end
hardware is estimated. A maximum speed of 99.23 inferences per second for mid-range hardware
shows that this approach allows to build an object detector fast enough for most real-time appli-
cations. The maximum speed of 6.54 inferences per second on low-end hardware reflects the big
difference in available hardware resources. Using cheaper hardware reduces the speed considerably,
but it is still fast enough for many applications. Additionally, it shows that even the low-end im-
plementation will outperform conventional embedded processors by far. The SSD-7 is estimated
to achieve 0.435 inferences per second when executed purely on an 1 GHz CPU such as the ARM
cortex A9 (appendix, section 12.2). Sections 6.4.2 and 6.4.3 investigate the challenges of memory
access and storage. The ping-pong implementation of the FBUF, which allows simultaneous ac-
cess from the SAs as well as the data mover, mitigates this problem. The memory operations can
possibly be done completely simultaneously to the processing of the convolution operations in the
SAs, if the available time is sufficient. The estimation provided in section 6.4.4 indicates that the
operations to be performed by the CPU do not limit the inference speed on the target mid-range
hardware.
The performance even on the low-end target hardware is sufficient to build a demonstrator aiming
to present the capabilities of the Low-Cost CNN Accelerator. It could be implemented on an
embedded CPU system as well to highlight the difference in processing speed.

7.2 Choosing the Parameters

This section describes how to use the findings of this thesis in two possible ways. In scenario 1, a
user has a specific hardware and wants to know how fast he can run an SDD-7 object detector on
it. In scenario 2, a user has a task which requires a minimum inference speed and wants to know
which hardware to use. The instructions do not take into account the additional consumption of
BRAM for the implementation of the FBUF.

HSLU Cyrill Durrer 34

Embedded Object Detection with Convolutional Neural Networks BAT FS20

7.2.1 Scenario 1: Target Hardware

In this example, someone wants to run an object detector on a hardware she already possesses.
There are probably other designs implemented on the same hardware, but she knows exactly how
much hardware resources are available. As a fictional example, there are 100’000 LUTs, 120’000
FFs, 140 DSPs and 120 BRAMs available.
In figure 6.3, respectively figure 7.1, the maximum inference for every resource can be extracted.
The color of the line indicates the value of Darch and the number of the datapoint in the graph is
the number of systolic arrays NSA. To find the maximum possible inference speed, the best values
for Darch and NSA which can be implemented must be determined. For this, the most limiting
resource needs to be identified. Then the parameters Darch and NSA with the highest inference
speed for this resource are selected.

Figure 7.1: Figure 6.3 with markings for scenario 1

Figure 7.1 shows how to apply hardware constraints to determine the maximum possible infer-
ence speed and the corresponding values for Darch and NSA.

1. Mark the maximum available hardware resources in every graph (red lines).

2. In each graph, determine the point left of the red line with the highest inference speed
(coloured arrows, purple line). In the DSP and BRAM graphs this would be a point on the
green line (Darch “ 64) outside the boundaries of this figure. Because this configuration
would consume more LUTs and FFs than provided, it can be neglected.

3. Identify the corresponding Darch (color of the graph) and NSA (number of the datapoint
started from the leftmost point).

4. Identify the most limiting resource. This is the one with a maximum datapoint (Darch,NSA)
which is to the left of the red line in all the other graphs too (red circles). In this case it is
LUT.

5. Read the inference speed (purple number), Darch and NSA values for this datapoint.

The best possible configuration for scenario 1 is Darch “ 16 and NSA “ 16 which achieves an
inference speed of approximately 43 inferences per second. The exact numbers can be found in the
appendix, section 12.2.

HSLU Cyrill Durrer 35

Embedded Object Detection with Convolutional Neural Networks BAT FS20

7.2.2 Scenario 2: Target Inference Speed

If there is a predefined task to be performed for an object detector on an embedded system, it will
need a minimum inference speed to work properly. As a fictional example, the minimum inference
speed is chosen to be 40 inferences per second.

Figure 7.2: Figure 6.3 with markings for scenario 2

Figure 7.1 shows how to apply inference speed constraints to determine which hardware needs
to be chosen to achieve it.

1. Mark the minimal inference speed in every graph (horizontal red lines)

2. Determine the leftmost point above the red line (coloured arrows, purple line).

3. Read the hardware requirement for this resource (purple number).

4. Choose the one resource which is most limited in the possible hardware choices (the one for
which the corresponding purple number comes closest to the available resources of the same
type). For scenario 2 we choose FFs to be the most limiting resource.

5. Identify the corresponding Darch (color of the graph) and NSA (number of the datapoint
started from the leftmost point) for the chosen resource. In this scenario the values are
Darch “ 32 and NSA “ 10.

6. Find the datapoints for the same configuration of Darch and NSA in the other graphs (red
circles).

7. Read the hardware requirements for this configuration for every resource (red numbers). The
resulting hardware requirements are: 113’100 LUTs, 60’090 FFs, 40 DSPs and 40 BRAMs.

The resource requirements found this way indicate the amount of resources an FPGA must pro-
vide in order to implement the architecture defined by the respective Darch and NSA values. If
you choose a sufficiently big FPGA, the HA will achieve the required inference speed. The exact
numbers can be found in the appendix, section 12.2.

HSLU Cyrill Durrer 36

Embedded Object Detection with Convolutional Neural Networks BAT FS20

7.3 Major Challenges

7.3.1 mAP Computation

The project[9] which provided the keras implementation of the SSD-7 network also contains code
to determine the mAP of the trained network. However, this code did not work with the Udaci-
ty/Roboflow dataset. The error was hard to track down, so it seemed easier to implement it from
scratch.
The complexity of this metric made it more challenging to implement than initially anticipated,
but it also helped greatly in attaining knowledge of how it works and how object detectors work
in general. The intermediate results in the computation could be used to analyze the performance
in more detail and to provide figures such as figure 4.5.

7.3.2 Framework Incompatibility: Keras API vs. tf.keras

The SSD-7 from [9] is implemented in Keras (also know as Keras API) using TensorFlow as
backend. Conversely, the implementation of the binary approximation and the necessary conversion
function[11] uses TensorFlow with Keras as frontend. The term tf.keras indicates this method.
Even though they seem to be the same and have almost the exact same features and capabilities,
they are not compatible with each other. The reason for this is that Keras API is capable of working
with other backend frameworks like Theano. With the term tf.keras another Keras version, which
is built into TensorFlow, can be accessed.
This incompatibility became apparent when trying to load the model stored in .h5-file in the code
to replace the convolutional layers with binary convolutional layers. One possible solution was to
convert the whole SSD project to tf.keras. This turned out to be problematic because some custom
objects (e.g. the anchors layers and the loss function) depended on functions which are different in
the two frameworks. The applied solution was to build a similar network model in tf.keras without
the custom objects, because they are unaffected by the binary approximation. The trained weights
were loaded into the new model. Then the model and the trained weights were converted and
stored as a new .h5-file.
It later turned out that the data generator in combination with the custom loss function were
responsible for the incompatibility. The data generator takes images and labels from the dataset
and prepares them for the network during training. This is usually done batch-wise in order to
conserve memory space. When the data generator was removed from the model and executed
in advance, storing all necessary data in the memory, the problem was solved. The cost of this
workaround is a very high memory consumption on the training machine.
To solve this problem in a more effective way, the data generator needs to be adjusted to work in
a tf.keras model.

7.4 Outlook

7.4.1 CPU Bottleneck Investigation

Even though this problem has been addressed in section 6.4.4, there were some uncertainties in the
provided estimations. To determine the computation time which the CPU requires to control the
HA and perform the necessary operations (primarily the NMS stage and the softmax activation),
it should be implemented on the target CPU. Runtime measurements then provide with absolute
certainty at which inference speed the CPU will become a bottleneck in the system.

7.4.2 Memory Access Bottleneck Investigation

Especially the necessary tiling of the feature maps described in section 6.4.3 indicates that the
memory access speed is of central importance. An investigation into the rates at which data can
be loaded from the memory into the FBUF and vice versa would provide valuable insight. Because
the HA shares the AXI bus with the CPU it is important to consider which tasks are running on
the CPU. If the CPU needs to access the memory at same time, the the data rate will be reduced.

HSLU Cyrill Durrer 37

Embedded Object Detection with Convolutional Neural Networks BAT FS20

7.4.3 Hardware Accelerator Adjustments

Up to this point, the HA has only been used for classification problems with one SA (e.g. NSA “ 1).
To enable the HA to achieve the estimated inference speeds, the planned parallelization of multiple
SAs has to be implemented and tested.
There are some architecture details specific to the SSD approach which need to be added as well.
Most important are the unusual connections between the layers conv4-7 with the later predictor
layers. To achieve this, the convolutional layers have to be separated from the pooling layers and
the feature tensor has to be stored in the FBUF for later use. At the current state, the pooling is
applied directly in the output datastream of the convolutional layer and the FBUF only stores the
data to be used in the next step.
A way to access the memory in a way which resembles the reshape and concatenation layers needs
to be implemented as well. If this should be done by the HA or the PS is not yet clear.

7.4.4 High-Level Optimization

Another approach which is developed as part of the CNN accelerator framework is a high-level
optimization[16]. Figure 6.4 shows that the first three layers contain the most potential to reduce
the complexity of the network. With an evolutionary algorithm, the network architecture (e.g.
filter sizes, number of layers etc.) can be optimized to consume a minimum amount of hardware
resources but still achieve a decent performance. This could drastically reduce the hardware
consumption of the network, allowing it to run on cheaper hardware or to increase NSA and thus
further increase the inference speed. This approach could also help reducing the complexity of
bigger networks like the original SSD300 and SSD512[18] to be able to implement them with a
smaller amount of hardware resources than otherwise required.

7.4.5 Different Datasets

To better assess the generalizability of the network as well as to better compare the results to other
object detectors, it can be trained and tested on other datasets. Because of the similarity to the
Udacity/Roboflow dataset and the widespread use, Pascal VOC would be a good choice for further
tests. The fact that Pascal VOC contains 20 classes could mean that the SSD-7 is too simple to
perform decently, if all the classes are included. For the much more complex COCO dataset it
can be assumed that this network architecture would not be able to differentiate the 80 classes in
various contexts. For this test, a more complex network like the original SSD300 or SSD512 should
be considered.

7.4.6 Comparison with Competitors

From an economic perspective it is crucial to know how the Low-Cost CNN Accelerator compares
to other embedded object detectors and hardware accelerators. To make the product attractive,
it is important in which scenarios it outperforms its competitors. Implementing the same object
detector, for example the SSD-7, on another hardware with a different approach of hardware
acceleration could provide valuable insight in how to advertise the product once finished. It can
also provide the necessary information to choose the best direction in which to focus the further
development of the product.

HSLU Cyrill Durrer 38

Embedded Object Detection with Convolutional Neural Networks BAT FS20

8. List of Abbreviations

Adam Adaptive Moment Optimization
AXI Advanced eXtensible Interface
AP Average Precision
API Application Programming Interface
BACNN Binary Approximated Convolutional Neural Network[11]
BA-SSD Binary Approximated Single Shot Detector
BAT Bachelor Thesis
BRAM Block Random Access Memory
CNN Convolutional Neural Network
COCO Common Objects in Context[17]
CPU Central Processing Unit
DDR3 Double Data Rate 3
DMA Direct Memory Access
DQA Data Quality Assessment
DSP Digital Signal Processor
ELU Exponential Linear Unit
FC Fully Connected (Keras: ”dense” layer)
FF Flip Flop
FN False Negative
FP False Positive
FPGA Field Programmable Gate Array
FPS Frames Per Second
FS20 Spring Semester 2020
GPU Graphics Processing Unit
HA Hardware Accelerator
HSLU Lucerne University of Applied Sciences and Arts
LUT Lookup Table
mAP Mean Average Precision
NMS Non-Maximum Suppression
NN Neural Network
PL Programmable Logic
PR Curve Precision-Recall Curve
PS Processing System
ReLU Rectified Linear Unit
R-CNN Region-CNN (CNN Object Detector Architecture)
SA Systolic Array
SSD Single-Shot MultiBox Detector[18]
SUC Systolic Unit Cycles
TN True Negative
TP True Positive
VHDL Very High Speed Integrated Circuit Hardware Description

Language
VOC Visual Object Classes[8]
YOLO You Only Look Once (CNN Object Detector Architecture)

HSLU Cyrill Durrer 39

Embedded Object Detection with Convolutional Neural Networks BAT FS20

List of Figures

2.1 Visual explanation of IoU with an example from the Udacity[24]/Roboflow[5]
dataset. The blue area is the intersection and the blue and the red areas together
form the union. 8

3.1 SSD architecture, input: 300x300x3 (image source: [18]) 11

4.1 SSD-7 architecture . 13
4.2 Detailed view of the SSD-7 class & box predictor layers 13
4.3 Detailed view of the SSD-7 NMS stage . 14
4.4 Predictions of the SSD-7 on an image of the Udacity[24]/Roboflow[5] dataset . . . 16
4.5 Precision-recall curves of all classes . 17
4.6 Class balance of the Udacity self-driving car dataset[5] 18

5.1 Performance (mAP) of the BA-SSDs as a function of M 21
5.2 AP values of the different classes as a function of M 21
5.3 Performance (mAP) of the retrained BA-SSDs as a function of M 22
5.4 Performance (mAP) of the retrained BA-SSDs as a function of M with ReLU acti-

vation functions . 23

6.1 BinArray System: a combination of PS (ARM-CPU) and HA implemented on a PL
(image source: [11]) . 25

6.2 Inference speed as a function of the relative hardware usage (LUTs) of the mid-
range hardware (XC7Z045), for three SA height values Darch when NSA (coloured
numbers) is increased from one to NSA´max . 27

6.3 Inference speed as a function of absolute hardware usage, split into the four basic
hardware resources . 28

6.4 Processing time of the HA per convolutional layer for Darch values 16, 32 and 64 . 29

7.1 Figure 6.3 with markings for scenario 1 . 35
7.2 Figure 6.3 with markings for scenario 2 . 36

HSLU Cyrill Durrer 40

Embedded Object Detection with Convolutional Neural Networks BAT FS20

List of Tables

4.1 Hyperparameters overview . 14
4.2 Training parameters overview . 15
4.3 Average precision values of the different classes and resulting mAP 17
4.4 Applied confidence thresholds for each class . 19

5.1 Performance (mAP) of the BA-SSDs without retraining 21
5.2 Performance (mAP) of the BA-SSDs with retraining 22
5.3 Average precision values of the different classes and resulting mAP with ReLU . . 22
5.4 Performance (mAP) of the retrained BA-SSDs with ReLU activation functions . . 23

6.1 Available hardware resources of a mid-range (XC7Z045) and a low-end (XC7Z010)
FPGA . 26

6.2 Hardware usage of the mid-range FPGA (XC7Z045) for different SA heights Darch 26
6.3 Hardware usage of the low-end FPGA (XC7Z010) for different SA heights Darch . 27
6.4 Resulting inference speed for different SA heights Darch with one SA as well as

with the maximum number of SA to fit into the mid-range (XC7Z045) or low-end
(XC7Z010) FPGA . 27

6.5 CPU operations per image in a worst-case scenario 32

HSLU Cyrill Durrer 41

Embedded Object Detection with Convolutional Neural Networks BAT FS20

Bibliography

[1] Jason Brownlee. A gentle introduction to the rectified linear unit (ReLU).
https://machinelearningmastery.com/rectified-linear-activation-function-
for-deep-learning-neural-networks/, 2019. (Accessed on 05/06/2020).

[2] Jason Brownlee. How to use ROC curves and precision-recall curves for classification
in python. https://machinelearningmastery.com/roc-curves-and-precision-recall-
curves-for-classification-in-python/, 2019. (Accessed on 03/19/2020).

[3] François Chollet et al. Keras. https://keras.io, 2015.

[4] Brad Dwyer. A popular self-driving car dataset is missing labels for hundreds of pedes-
trians. https://blog.roboflow.ai/self-driving-car-dataset-missing-pedestrians,
2020. (Accessed on 03/04/2020).

[5] Brad Dwyer. Udacity self driving car dataset. https://public.roboflow.ai/object-
detection/self-driving-car, 2020. (Accessed on 03/04/2020).

[6] Mart́ın Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/, 2015.

[7] Tsung-Yi Lin et al. COCO - common objects in context. http://cocodataset.org/
#detection-eval, 2019. (Accessed on 03/19/2020).

[8] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. Int. J. Comput. Vision, 88(2):303–338, June
2010.

[9] Pierluigi Ferrari. SSD: single-shot multibox detector implementation in keras. https://

github.com/pierluigiferrari/ssd keras, 2018. (Accessed on 03/02/2020).

[10] Mario Fischer and Jürgen Wassner. BinArray: A flexible hardware architecture for CNNs
with binary encoded weights. Thesis HSLU, 2019.

[11] Mario Fischer and Jürgen Wassner. BinArray: A scalable hardware architecture for binary
approximated CNNs. MSE Thesis HSLU, 2020.

[12] Hao Gao. Object localization in overfeat - towards data science. https://

towardsdatascience.com/object-localization-in-overfeat-5bb2f7328b62, 2017. (Ac-
cessed on 05/13/2020).

[13] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.

[14] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi,
Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Murphy. Speed/ac-
curacy trade-offs for modern convolutional object detectors. CoRR, abs/1611.10012, 2016.

[15] Jonathan Hui. mAP (mean average precision) for object detection - jonathan
hui - medium. https://medium.com/@jonathan hui/map-mean-average-precision-for-

object-detection-45c121a31173, 2018. (Accessed on 03/17/2020).

HSLU Cyrill Durrer 42

Embedded Object Detection with Convolutional Neural Networks BAT FS20

[16] Michael Kurmann. Optimization of neural networks for FPGA implementation. MSE Ver-
tiefungsarbeit HSLU, 2020.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft COCO:
Common objects in context, 2014.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang
Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015.

[19] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[20] Sumit Saha. A comprehensive guide to convolutional neural networks — the eli5
way. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53, 2018. (Accessed on 06/02/2020).

[21] Tarang Shah. Measuring object detection models - mAP - what is mean average pre-
cision? https://tarangshah.com/blog/2018-01-27/what-is-map-understanding-the-
statistic-of-choice-for-comparing-object-detection-models, 2018. (Accessed on
03/19/2020).

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[23] Ren Jie Tan. Breaking down mean average precision (mAP) - towards data sci-
ence. https://towardsdatascience.com/breaking-down-mean-average-precision-map-
ae462f623a52, 2019. (Accessed on 03/16/2020).

[24] Udacity: Become a self-driving car engineer. https://www.udacity.com/course/self-
driving-car-engineer-nanodegree--nd013, 2016. (Accessed on 05/13/2020).

HSLU Cyrill Durrer 43

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12. Appendix

12.1 Equations

sizepT4q “ AFmap4 ˚Nchannels4 “ 64 ˚ 64 ˚ 64B “ 262.144 kB (12.1)

sizepT5q “ AFmap5 ˚Nchannels5 “ 32 ˚ 32 ˚ 64B “ 65.536 kB (12.2)

sizepT6q “ AFmap6 ˚Nchannels6 “ 16 ˚ 16 ˚ 48B “ 12.288 kB (12.3)

sizepT7q “ AFmap7 ˚Nchannels7 “ 8 ˚ 8 ˚ 48B “ 3.072 kB (12.4)

HSLU Cyrill Durrer 44

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12.2 Additional Lists and Tables

12.2.1 Hardware Consumption

SSD7 Hardware Consumption

Parameters

D_arch 16

M_arch 4

Hardware Constraints XC7Z045 XC7Z010 %

BRAM 545 60 11.00917

DSP 900 80 8.888889

FF 437200 35200 8.051235

LUT 218600 17600 8.051235

Formulas max NSA max NSA

BRAM_per_SA 4 0.007339 136.25 0.066667 15

DSP_per_SA 4 0.004444 225 0.05 20

FF_processing_Array 128

FF_Munit 872

FF_toplevel 288

FF_per_SA 3897 0.008914 112.1889 0.11071 9.032589

LUT_processing_Array 1312

LUT_Munit 5852

LUT_per_SA 6062 0.027731 36.06071 0.344432 2.903332

Constants (Michael Kurmann VM1)

BRAM_mul 1

DSP_mul 1

FF_pe 8

FF_ab 8

FF_mul 70

FF_wb 12

FF_m_for_toplevel 56

FF_mpu 38

FF_qs 75

FF_bb 8

LUT_pe 82

LUT_ab 10

LUT_mul 130

LUT_wb 11

LUT_toplevel 50

LUT_mpu 35

LUT_qs 110

LUT_bb 15

HW Usage

36

HW Usage

2

XC7Z045 XC7Z010

HSLU Cyrill Durrer 45

Embedded Object Detection with Convolutional Neural Networks BAT FS20

SSD7 Hardware Consumption

Parameters

D_arch 32

M_arch 4

Hardware Constraints XC7Z045 XC7Z010 %

BRAM 545 60 11.00917

DSP 900 80 8.888889

FF 437200 35200 8.051235

LUT 218600 17600 8.051235

Formulas max NSA max NSA

BRAM_per_SA 4 0.007339 136.25 0.066667 15

DSP_per_SA 4 0.004444 225 0.05 20

FF_processing_Array 256

FF_Munit 1384

FF_toplevel 352

FF_per_SA 6009 0.013744 72.75753 0.17071 5.85788

LUT_processing_Array 2624

LUT_Munit 11100

LUT_per_SA 11310 0.051738 19.32803 0.642614 1.556145

Constants (Michael Kurmann VM1)

BRAM_mul 1

DSP_mul 1

FF_pe 8

FF_ab 8

FF_mul 70

FF_wb 12

FF_m_for_toplevel 56

FF_mpu 38

FF_qs 75

FF_bb 8

LUT_pe 82

LUT_ab 10

LUT_mul 130

LUT_wb 11

LUT_toplevel 50

LUT_mpu 35

LUT_qs 110

LUT_bb 15

HW Usage

19

HW Usage

1

XC7Z045 XC7Z010

HSLU Cyrill Durrer 46

Embedded Object Detection with Convolutional Neural Networks BAT FS20

SSD7 Hardware Consumption

Parameters

D_arch 64

M_arch 4

Hardware Constraints XC7Z045 XC7Z010 %

BRAM 545 60 11.00917

DSP 900 80 8.888889

FF 437200 35200 8.051235

LUT 218600 17600 8.051235

Formulas max NSA max NSA

BRAM_per_SA 4 0.007339 136.25 0.066667 15

DSP_per_SA 4 0.004444 225 0.05 20

FF_processing_Array 512

FF_Munit 2408

FF_toplevel 480

FF_per_SA 10233 0.023406 42.72452 0.29071 3.439851

LUT_processing_Array 5248

LUT_Munit 21596

LUT_per_SA 21806 0.099753 10.02476 1.238977 0.807117

Constants (Michael Kurmann VM1)

BRAM_mul 1

DSP_mul 1

FF_pe 8

FF_ab 8

FF_mul 70

FF_wb 12

FF_m_for_toplevel 56

FF_mpu 38

FF_qs 75

FF_bb 8

LUT_pe 82

LUT_ab 10

LUT_mul 130

LUT_wb 11

LUT_toplevel 50

LUT_mpu 35

LUT_qs 110

LUT_bb 15

HW Usage

10

HW Usage

0

XC7Z045 XC7Z010

HSLU Cyrill Durrer 47

HW vs Inference Speed

LUT FF DSP BRAM

218600 437200 900 545

D=16

D NSA LUT FF DSP BRAM LUT [%] FF [%] DSP [%] BRAM [%] Inference Speed Diff

16 1 6062 3897 4 4 2.77 0.89 0.44 0.73 2.76

16 2 12124 7794 8 8 5.54 1.78 0.89 1.47 4.86 2.10

16 3 18186 11691 12 12 8.31 2.67 1.33 2.20 6.43 1.57

16 4 24248 15588 16 16 11.08 3.57 1.78 2.94 9.71 3.29

16 5 30310 19485 20 20 13.85 4.46 2.22 3.67 9.75 0.04

16 6 36372 23382 24 24 16.62 5.35 2.67 4.40 14.64 4.89

16 7 42434 27279 28 28 19.39 6.24 3.11 5.14 14.67 0.04

16 8 48496 31176 32 32 22.16 7.13 3.56 5.87 19.43 4.75

16 9 54558 35073 36 36 24.93 8.02 4.00 6.61 23.15 3.72

16 10 60620 38970 40 40 27.7 8.91 4.44 7.34 24.83 1.68

16 11 66682 42867 44 44 30.47 9.80 4.89 8.07 24.87 0.04

16 12 72744 46764 48 48 33.24 10.70 5.33 8.81 33.08 8.20

16 13 78806 50661 52 52 36.01 11.59 5.78 9.54 33.13 0.05

16 14 84868 54558 56 56 38.78 12.48 6.22 10.28 34.74 1.61

16 15 90930 58455 60 60 41.55 13.37 6.67 11.01 38.02 3.28

16 16 96992 62352 64 64 44.32 14.26 7.11 11.74 42.94 4.92

16 17 103054 66249 68 68 47.09 15.15 7.56 12.48 43.00 0.05

16 18 109116 70146 72 72 49.86 16.04 8.00 13.21 48.05 5.06

16 19 115178 74043 76 76 52.63 16.94 8.44 13.94 48.11 0.05

16 20 121240 77940 80 80 55.4 17.83 8.89 14.68 52.75 4.65

16 21 127302 81837 84 84 58.17 18.72 9.33 15.41 56.27 3.52

16 22 133364 85734 88 88 60.94 19.61 9.78 16.15 58.01 1.74

16 23 139426 89631 92 92 63.71 20.50 10.22 16.88 58.06 0.05

16 24 145488 93528 96 96 66.48 21.39 10.67 17.61 66.16 8.09

16 25 151550 97425 100 100 69.25 22.28 11.11 18.35 66.21 0.06

16 26 157612 101322 104 104 72.02 23.18 11.56 19.08 67.90 1.69

16 27 163674 105219 108 108 74.79 24.07 12.00 19.82 71.25 3.35

16 28 169736 109116 112 112 77.56 24.96 12.44 20.55 76.04 4.79

16 29 175798 113013 116 116 80.33 25.85 12.89 21.28 76.09 0.05

16 30 181860 116910 120 120 83.1 26.74 13.33 22.02 81.19 5.09

16 31 187922 120807 124 124 85.87 27.63 13.78 22.75 81.24 0.05

16 32 193984 124704 128 128 88.64 28.52 14.22 23.49 85.89 4.65

16 33 200046 128601 132 132 91.41 29.41 14.67 24.22 89.36 3.47

16 34 206108 132498 136 136 94.18 30.31 15.11 24.95 91.12 1.76

16 35 212170 136395 140 140 96.95 31.20 15.56 25.69 91.17 0.05

16 36 218232 140292 144 144 99.72 32.09 16.00 26.42 99.23 8.06

D=32

D NSA LUT FF DSP BRAM LUT [%] FF [%] DSP [%] BRAM [%] Inference Speed Diff

32 1 11310 6009 4 4 5.17 1.37 0.44 0.73 4.77

32 2 22620 12018 8 8 10.34 2.75 0.89 1.47 9.54 4.77

32 3 33930 18027 12 12 15.51 4.12 1.33 2.20 10.63 1.09

32 4 45240 24036 16 16 20.68 5.50 1.78 2.94 19.07 8.45

32 5 56550 30045 20 20 25.85 6.87 2.22 3.67 20.32 1.25

32 6 67860 36054 24 24 31.02 8.25 2.67 4.40 28.61 8.29

32 7 79170 42063 28 28 36.19 9.62 3.11 5.14 29.93 1.32

32 8 90480 48072 32 32 41.36 11.00 3.56 5.87 38.15 8.22

32 9 101790 54081 36 36 46.53 12.37 4.00 6.61 39.50 1.35

32 10 113100 60090 40 40 51.7 13.74 4.44 7.34 47.68 8.19

32 11 124410 66099 44 44 56.87 15.12 4.89 8.07 49.06 1.37

32 12 135720 72108 48 48 62.04 16.49 5.33 8.81 57.22 8.17

32 13 147030 78117 52 52 67.21 17.87 5.78 9.54 58.61 1.39

Available Resources (XC7Z045):

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12.2.2 Inference Speed Estimations

HSLU Cyrill Durrer 48

32 14 158340 84126 56 56 72.38 19.24 6.22 10.28 66.76 8.15

32 15 169650 90135 60 60 77.55 20.62 6.67 11.01 68.15 1.40

32 16 180960 96144 64 64 82.72 21.99 7.11 11.74 76.29 8.14

32 17 192270 102153 68 68 87.89 23.37 7.56 12.48 77.70 1.41

32 18 203580 108162 72 72 93.06 24.74 8.00 13.21 85.83 8.13

32 19 214890 114171 76 76 98.23 26.11 8.44 13.94 87.24 1.41

32 20 226200 120180 80 80 103.40 27.49 8.89 14.68 95.37 8.12

32 21 237510 126189 84 84 108.57 28.86 9.33 15.41 96.78 1.42

32 22 248820 132198 88 88 113.74 30.24 9.78 16.15 104.90 8.12

D=64

D NSA LUT FF DSP BRAM LUT [%] FF [%] DSP [%] BRAM [%] Inference Speed Diff

64 1 21806 10233 4 4 9.98 2.34 0.44 0.73 7.29

64 2 43612 20466 8 8 19.96 4.68 0.89 1.47 14.59 7.29

64 3 65418 30699 12 12 29.94 7.02 1.33 2.20 21.88 7.29

64 4 87224 40932 16 16 39.92 9.36 1.78 2.94 29.17 7.29

64 5 109030 51165 20 20 49.9 11.70 2.22 3.67 36.46 7.29

64 6 130836 61398 24 24 59.88 14.04 2.67 4.40 43.76 7.29

64 7 152642 71631 28 28 69.86 16.38 3.11 5.14 51.05 7.29

64 8 174448 81864 32 32 79.84 18.72 3.56 5.87 58.34 7.29

64 9 196254 92097 36 36 89.82 21.07 4.00 6.61 65.64 7.29

64 10 218060 102330 40 40 99.8 23.41 4.44 7.34 72.93 7.29

64 11 239866 112563 44 44 109.78 51.49 4.89 8.07 80.22 7.29

64 12 261672 122796 48 48 119.76 56.17 5.33 8.81 87.52 7.29

64 13 283478 133029 52 52 129.74 60.85 5.78 9.54 94.81 7.29

64 14 305284 143262 56 56 139.72 65.54 6.22 10.28 102.10 7.29

Embedded Object Detection with Convolutional Neural Networks BAT FS20

HSLU Cyrill Durrer 49

Embedded Object Detection with Convolutional Neural Networks BAT FS20

La
ye

r
N

am
e

Ty
pe

H
ei

gh
t

W
id

th
D

ep
th

H
ei

gh
t

W
id

th
Pa

dd
in

g
St

rid
e

C
ou

nt
M

H
ei

gh
t

W
id

th
D

ep
th

Pr
oc

es
si

ng
 S

te
ps

N
_L

AS
N

_S
U

C
N

_T
N

_C
C

Ti
m

e
[s

]
C

PU
 C

C
C

PU
 T

im
e

[s
]

0
In

pu
t

51
2

51
2

3
1

co
nv

1
C

on
vo

lu
tio

n
51

2
51

2
3

5
5

2
1

32
4

51
2

51
2

32
25

16
58

24
00

1
2

1
39

32
16

00
9.

83
E-

02
62

91
45

60
0

6.
29

E-
01

2
co

nv
2

C
on

vo
lu

tio
n

25
6

25
6

32
3

3
1

1
48

4
25

6
25

6
48

36
23

87
86

56
1

3
1

56
62

31
04

1.
42

E-
01

90
59

69
66

4
9.

06
E-

01
3

co
nv

3
C

on
vo

lu
tio

n
12

8
12

8
48

3
3

1
1

64
4

12
8

12
8

64
18

11
93

93
28

1
4

1
28

31
15

52
7.

08
E-

02
45

29
84

83
2

4.
53

E-
01

4
co

nv
4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
64

4
64

64
64

60
39

79
77

6
1

4
1

94
37

18
4

2.
36

E-
02

15
09

94
94

4
1.

51
E-

01
5

co
nv

5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

48
4

32
32

48
11

32
46

20
8

1
3

1
17

69
47

2
4.

42
E-

03
28

31
15

52
2.

83
E-

02
6

co
nv

6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

48
4

16
16

48
21

23
36

64
1

3
1

33
17

76
8.

29
E-

04
53

08
41

6
5.

31
E-

03
7

co
nv

7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

48
4

8
8

48
53

08
41

6
1

3
1

82
94

4
2.

07
E-

04
13

27
10

4
1.

33
E-

03
8

cl
as

se
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
24

4
64

64
24

22
64

92
41

6
1

2
1

47
18

59
2

1.
18

E-
02

56
62

31
04

5.
66

E-
02

9
cl

as
se

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

24
4

32
32

24
56

62
31

04
1

2
1

11
79

64
8

2.
95

E-
03

14
15

57
76

1.
42

E-
02

10
cl

as
se

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

24
4

16
16

24
10

61
68

32
1

2
1

22
11

84
5.

53
E-

04
26

54
20

8
2.

65
E-

03
11

cl
as

se
s7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
24

4
8

8
24

26
54

20
8

1
2

1
55

29
6

1.
38

E-
04

66
35

52
6.

64
E-

04
12

bo
xe

s4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

16
4

64
64

16
15

09
94

94
4

1
1

1
23

59
29

6
5.

90
E-

03
37

74
87

36
3.

77
E-

02
13

bo
xe

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

16
4

32
32

16
37

74
87

36
1

1
1

58
98

24
1.

47
E-

03
94

37
18

4
9.

44
E-

03
14

bo
xe

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

16
4

16
16

16
70

77
88

8
1

1
1

11
05

92
2.

76
E-

04
17

69
47

2
1.

77
E-

03
15

bo
xe

s7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

16
4

8
8

16
17

69
47

2
1

1
1

27
64

8
6.

91
E-

05
44

23
68

4.
42

E-
04

To
ta

l
0.

36
27

80
16

To
ta

l
2.

29
70

94
14

4
In

fe
re

nc
e/

s
2.

75
6

C
PU

 In
fe

re
nc

e/
s

0.
43

5

1 4 16
1.

00
E-

09

2.

50
E-

09
T_

cc
 C

PU
T_

cc
 B

in
Ar

ra
y

B
A-

SS
D

7

Pa
ra

m
et

er
s

N
_S

A
M

_a
rc

h
D

_a
rc

h

In
pu

t F
ea

tu
re

Ke
rn

el
O

ut
pu

t F
ea

tu
re

Pe
rfo

rm
an

ce
 E

st
im

at
io

n

HSLU Cyrill Durrer 50

Embedded Object Detection with Convolutional Neural Networks BAT FS20

La
ye

r
N

am
e

Ty
pe

H
ei

gh
t

W
id

th
D

ep
th

H
ei

gh
t

W
id

th
Pa

dd
in

g
St

rid
e

C
ou

nt
M

H
ei

gh
t

W
id

th
D

ep
th

Pr
oc

es
si

ng
 S

te
ps

N
_L

AS
N

_S
U

C
N

_T
N

_C
C

Ti
m

e
[s

]
C

PU
 C

C
C

PU
 T

im
e

[s
]

0
In

pu
t

51
2

51
2

3
1

co
nv

1
C

on
vo

lu
tio

n
51

2
51

2
3

5
5

2
1

32
4

51
2

51
2

32
25

16
58

24
00

36
1

18
10

92
26

7
2.

73
E-

03
62

91
45

60
0

6.
29

E-
01

2
co

nv
2

C
on

vo
lu

tio
n

25
6

25
6

32
3

3
1

1
48

4
25

6
25

6
48

36
23

87
86

56
36

1
12

15
72

86
4

3.
93

E-
03

90
59

69
66

4
9.

06
E-

01
3

co
nv

3
C

on
vo

lu
tio

n
12

8
12

8
48

3
3

1
1

64
4

12
8

12
8

64
18

11
93

93
28

36
1

9
78

64
32

1.
97

E-
03

45
29

84
83

2
4.

53
E-

01
4

co
nv

4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

64
4

64
64

64
60

39
79

77
6

36
1

9
26

21
44

6.
55

E-
04

15
09

94
94

4
1.

51
E-

01
5

co
nv

5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

48
4

32
32

48
11

32
46

20
8

36
1

12
49

15
2

1.
23

E-
04

28
31

15
52

2.
83

E-
02

6
co

nv
6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
48

4
16

16
48

21
23

36
64

36
1

12
92

16
2.

30
E-

05
53

08
41

6
5.

31
E-

03
7

co
nv

7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

48
4

8
8

48
53

08
41

6
36

1
12

23
04

5.
76

E-
06

13
27

10
4

1.
33

E-
03

8
cl

as
se

s4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

24
4

64
64

24
22

64
92

41
6

36
1

18
13

10
72

3.
28

E-
04

56
62

31
04

5.
66

E-
02

9
cl

as
se

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

24
4

32
32

24
56

62
31

04
36

1
18

32
76

8
8.

19
E-

05
14

15
57

76
1.

42
E-

02
10

cl
as

se
s6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
24

4
16

16
24

10
61

68
32

36
1

18
61

44
1.

54
E-

05
26

54
20

8
2.

65
E-

03
11

cl
as

se
s7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
24

4
8

8
24

26
54

20
8

36
1

18
15

36
3.

84
E-

06
66

35
52

6.
64

E-
04

12
bo

xe
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
16

4
64

64
16

15
09

94
94

4
36

1
36

65
53

6
1.

64
E-

04
37

74
87

36
3.

77
E-

02
13

bo
xe

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

16
4

32
32

16
37

74
87

36
36

1
36

16
38

4
4.

10
E-

05
94

37
18

4
9.

44
E-

03
14

bo
xe

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

16
4

16
16

16
70

77
88

8
36

1
36

30
72

7.
68

E-
06

17
69

47
2

1.
77

E-
03

15
bo

xe
s7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
16

4
8

8
16

17
69

47
2

36
1

36
76

8
1.

92
E-

06
44

23
68

4.
42

E-
04

To
ta

l
0.

01
00

77
23

To
ta

l
2.

29
70

94
14

4
In

fe
re

nc
e/

s
99

.2
34

C
PU

 In
fe

re
nc

e/
s

0.
43

5

36 4 16
1.

00
E-

09

2.

50
E-

09
T_

cc
 C

PU
T_

cc
 B

in
Ar

ra
y

B
A-

SS
D

7

Pa
ra

m
et

er
s

N
_S

A
M

_a
rc

h
D

_a
rc

h

In
pu

t F
ea

tu
re

Ke
rn

el
O

ut
pu

t F
ea

tu
re

Pe
rfo

rm
an

ce
 E

st
im

at
io

n

HSLU Cyrill Durrer 51

Embedded Object Detection with Convolutional Neural Networks BAT FS20

La
ye

r
N

am
e

Ty
pe

H
ei

gh
t

W
id

th
D

ep
th

H
ei

gh
t

W
id

th
Pa

dd
in

g
St

rid
e

C
ou

nt
M

H
ei

gh
t

W
id

th
D

ep
th

Pr
oc

es
si

ng
 S

te
ps

N
_L

AS
N

_S
U

C
N

_T
N

_C
C

Ti
m

e
[s

]
C

PU
 C

C
C

PU
 T

im
e

[s
]

0
In

pu
t

51
2

51
2

3
1

co
nv

1
C

on
vo

lu
tio

n
51

2
51

2
3

5
5

2
1

32
4

51
2

51
2

32
25

16
58

24
00

1
1

1
19

66
08

00
4.

92
E-

02
62

91
45

60
0

6.
29

E-
01

2
co

nv
2

C
on

vo
lu

tio
n

25
6

25
6

32
3

3
1

1
48

4
25

6
25

6
48

36
23

87
86

56
1

2
1

37
74

87
36

9.
44

E-
02

90
59

69
66

4
9.

06
E-

01
3

co
nv

3
C

on
vo

lu
tio

n
12

8
12

8
48

3
3

1
1

64
4

12
8

12
8

64
18

11
93

93
28

1
2

1
14

15
57

76
3.

54
E-

02
45

29
84

83
2

4.
53

E-
01

4
co

nv
4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
64

4
64

64
64

60
39

79
77

6
1

2
1

47
18

59
2

1.
18

E-
02

15
09

94
94

4
1.

51
E-

01
5

co
nv

5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

48
4

32
32

48
11

32
46

20
8

1
2

1
11

79
64

8
2.

95
E-

03
28

31
15

52
2.

83
E-

02
6

co
nv

6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

48
4

16
16

48
21

23
36

64
1

2
1

22
11

84
5.

53
E-

04
53

08
41

6
5.

31
E-

03
7

co
nv

7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

48
4

8
8

48
53

08
41

6
1

2
1

55
29

6
1.

38
E-

04
13

27
10

4
1.

33
E-

03
8

cl
as

se
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
24

4
64

64
24

22
64

92
41

6
1

1
1

23
59

29
6

5.
90

E-
03

56
62

31
04

5.
66

E-
02

9
cl

as
se

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

24
4

32
32

24
56

62
31

04
1

1
1

58
98

24
1.

47
E-

03
14

15
57

76
1.

42
E-

02
10

cl
as

se
s6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
24

4
16

16
24

10
61

68
32

1
1

1
11

05
92

2.
76

E-
04

26
54

20
8

2.
65

E-
03

11
cl

as
se

s7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

24
4

8
8

24
26

54
20

8
1

1
1

27
64

8
6.

91
E-

05
66

35
52

6.
64

E-
04

12
bo

xe
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
16

4
64

64
16

15
09

94
94

4
1

1
1

23
59

29
6

5.
90

E-
03

37
74

87
36

3.
77

E-
02

13
bo

xe
s5

C
on

vo
lu

tio
n

32
32

64
3

3
1

1
16

4
32

32
16

37
74

87
36

1
1

1
58

98
24

1.
47

E-
03

94
37

18
4

9.
44

E-
03

14
bo

xe
s6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
16

4
16

16
16

70
77

88
8

1
1

1
11

05
92

2.
76

E-
04

17
69

47
2

1.
77

E-
03

15
bo

xe
s7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
16

4
8

8
16

17
69

47
2

1
1

1
27

64
8

6.
91

E-
05

44
23

68
4.

42
E-

04

To
ta

l
0.

20
97

17
76

To
ta

l
2.

29
70

94
14

4
In

fe
re

nc
e/

s
4.

76
8

C
PU

 In
fe

re
nc

e/
s

0.
43

5

1 4 32
1.

00
E-

09

2.

50
E-

09
T_

cc
 C

PU
T_

cc
 B

in
Ar

ra
y

B
A-

SS
D

7

Pa
ra

m
et

er
s

N
_S

A
M

_a
rc

h
D

_a
rc

h

In
pu

t F
ea

tu
re

Ke
rn

el
O

ut
pu

t F
ea

tu
re

Pe
rfo

rm
an

ce
 E

st
im

at
io

n

HSLU Cyrill Durrer 52

Embedded Object Detection with Convolutional Neural Networks BAT FS20

La
ye

r
N

am
e

Ty
pe

H
ei

gh
t

W
id

th
D

ep
th

H
ei

gh
t

W
id

th
Pa

dd
in

g
St

rid
e

C
ou

nt
M

H
ei

gh
t

W
id

th
D

ep
th

Pr
oc

es
si

ng
 S

te
ps

N
_L

AS
N

_S
U

C
N

_T
N

_C
C

Ti
m

e
[s

]
C

PU
 C

C
C

PU
 T

im
e

[s
]

0
In

pu
t

51
2

51
2

3
1

co
nv

1
C

on
vo

lu
tio

n
51

2
51

2
3

5
5

2
1

32
4

51
2

51
2

32
25

16
58

24
00

19
1

19
10

34
77

9
2.

59
E-

03
62

91
45

60
0

6.
29

E-
01

2
co

nv
2

C
on

vo
lu

tio
n

25
6

25
6

32
3

3
1

1
48

4
25

6
25

6
48

36
23

87
86

56
19

1
9

20
97

15
2

5.
24

E-
03

90
59

69
66

4
9.

06
E-

01
3

co
nv

3
C

on
vo

lu
tio

n
12

8
12

8
48

3
3

1
1

64
4

12
8

12
8

64
18

11
93

93
28

19
1

9
78

64
32

1.
97

E-
03

45
29

84
83

2
4.

53
E-

01
4

co
nv

4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

64
4

64
64

64
60

39
79

77
6

19
1

9
26

21
44

6.
55

E-
04

15
09

94
94

4
1.

51
E-

01
5

co
nv

5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

48
4

32
32

48
11

32
46

20
8

19
1

9
65

53
6

1.
64

E-
04

28
31

15
52

2.
83

E-
02

6
co

nv
6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
48

4
16

16
48

21
23

36
64

19
1

9
12

28
8

3.
07

E-
05

53
08

41
6

5.
31

E-
03

7
co

nv
7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
48

4
8

8
48

53
08

41
6

19
1

9
30

72
7.

68
E-

06
13

27
10

4
1.

33
E-

03
8

cl
as

se
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
24

4
64

64
24

22
64

92
41

6
19

1
19

12
41

74
3.

10
E-

04
56

62
31

04
5.

66
E-

02
9

cl
as

se
s5

C
on

vo
lu

tio
n

32
32

64
3

3
1

1
24

4
32

32
24

56
62

31
04

19
1

19
31

04
4

7.
76

E-
05

14
15

57
76

1.
42

E-
02

10
cl

as
se

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

24
4

16
16

24
10

61
68

32
19

1
19

58
21

1.
46

E-
05

26
54

20
8

2.
65

E-
03

11
cl

as
se

s7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

24
4

8
8

24
26

54
20

8
19

1
19

14
56

3.
64

E-
06

66
35

52
6.

64
E-

04
12

bo
xe

s4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

16
4

64
64

16
15

09
94

94
4

19
1

19
12

41
74

3.
10

E-
04

37
74

87
36

3.
77

E-
02

13
bo

xe
s5

C
on

vo
lu

tio
n

32
32

64
3

3
1

1
16

4
32

32
16

37
74

87
36

19
1

19
31

04
4

7.
76

E-
05

94
37

18
4

9.
44

E-
03

14
bo

xe
s6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
16

4
16

16
16

70
77

88
8

19
1

19
58

21
1.

46
E-

05
17

69
47

2
1.

77
E-

03
15

bo
xe

s7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

16
4

8
8

16
17

69
47

2
19

1
19

14
56

3.
64

E-
06

44
23

68
4.

42
E-

04

To
ta

l
0.

01
14

62
34

To
ta

l
2.

29
70

94
14

4
In

fe
re

nc
e/

s
87

.2
42

C
PU

 In
fe

re
nc

e/
s

0.
43

5

19 4 32
1.

00
E-

09

2.

50
E-

09
T_

cc
 C

PU
T_

cc
 B

in
Ar

ra
y

B
A-

SS
D

7

Pa
ra

m
et

er
s

N
_S

A
M

_a
rc

h
D

_a
rc

h

In
pu

t F
ea

tu
re

Ke
rn

el
O

ut
pu

t F
ea

tu
re

Pe
rfo

rm
an

ce
 E

st
im

at
io

n

HSLU Cyrill Durrer 53

Embedded Object Detection with Convolutional Neural Networks BAT FS20

La
ye

r
N

am
e

Ty
pe

H
ei

gh
t

W
id

th
D

ep
th

H
ei

gh
t

W
id

th
Pa

dd
in

g
St

rid
e

C
ou

nt
M

H
ei

gh
t

W
id

th
D

ep
th

Pr
oc

es
si

ng
 S

te
ps

N
_L

AS
N

_S
U

C
N

_T
N

_C
C

Ti
m

e
[s

]
C

PU
 C

C
C

PU
 T

im
e

[s
]

0
In

pu
t

51
2

51
2

3
1

co
nv

1
C

on
vo

lu
tio

n
51

2
51

2
3

5
5

2
1

32
4

51
2

51
2

32
25

16
58

24
00

1
1

1
19

66
08

00
4.

92
E-

02
62

91
45

60
0

6.
29

E-
01

2
co

nv
2

C
on

vo
lu

tio
n

25
6

25
6

32
3

3
1

1
48

4
25

6
25

6
48

36
23

87
86

56
1

1
1

18
87

43
68

4.
72

E-
02

90
59

69
66

4
9.

06
E-

01
3

co
nv

3
C

on
vo

lu
tio

n
12

8
12

8
48

3
3

1
1

64
4

12
8

12
8

64
18

11
93

93
28

1
1

1
70

77
88

8
1.

77
E-

02
45

29
84

83
2

4.
53

E-
01

4
co

nv
4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
64

4
64

64
64

60
39

79
77

6
1

1
1

23
59

29
6

5.
90

E-
03

15
09

94
94

4
1.

51
E-

01
5

co
nv

5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

48
4

32
32

48
11

32
46

20
8

1
1

1
58

98
24

1.
47

E-
03

28
31

15
52

2.
83

E-
02

6
co

nv
6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
48

4
16

16
48

21
23

36
64

1
1

1
11

05
92

2.
76

E-
04

53
08

41
6

5.
31

E-
03

7
co

nv
7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
48

4
8

8
48

53
08

41
6

1
1

1
27

64
8

6.
91

E-
05

13
27

10
4

1.
33

E-
03

8
cl

as
se

s4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

24
4

64
64

24
22

64
92

41
6

1
1

1
23

59
29

6
5.

90
E-

03
56

62
31

04
5.

66
E-

02
9

cl
as

se
s5

C
on

vo
lu

tio
n

32
32

64
3

3
1

1
24

4
32

32
24

56
62

31
04

1
1

1
58

98
24

1.
47

E-
03

14
15

57
76

1.
42

E-
02

10
cl

as
se

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

24
4

16
16

24
10

61
68

32
1

1
1

11
05

92
2.

76
E-

04
26

54
20

8
2.

65
E-

03
11

cl
as

se
s7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
24

4
8

8
24

26
54

20
8

1
1

1
27

64
8

6.
91

E-
05

66
35

52
6.

64
E-

04
12

bo
xe

s4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

16
4

64
64

16
15

09
94

94
4

1
1

1
23

59
29

6
5.

90
E-

03
37

74
87

36
3.

77
E-

02
13

bo
xe

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

16
4

32
32

16
37

74
87

36
1

1
1

58
98

24
1.

47
E-

03
94

37
18

4
9.

44
E-

03
14

bo
xe

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

16
4

16
16

16
70

77
88

8
1

1
1

11
05

92
2.

76
E-

04
17

69
47

2
1.

77
E-

03
15

bo
xe

s7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

16
4

8
8

16
17

69
47

2
1

1
1

27
64

8
6.

91
E-

05
44

23
68

4.
42

E-
04

To
ta

l
0.

13
71

18
72

To
ta

l
2.

29
70

94
14

4
In

fe
re

nc
e/

s
7.

29
3

C
PU

 In
fe

re
nc

e/
s

0.
43

5

1 4 64
1.

00
E-

09

2.

50
E-

09
T_

cc
 C

PU
T_

cc
 B

in
Ar

ra
y

B
A-

SS
D

7

Pa
ra

m
et

er
s

N
_S

A
M

_a
rc

h
D

_a
rc

h

In
pu

t F
ea

tu
re

Ke
rn

el
O

ut
pu

t F
ea

tu
re

Pe
rfo

rm
an

ce
 E

st
im

at
io

n

HSLU Cyrill Durrer 54

Embedded Object Detection with Convolutional Neural Networks BAT FS20

La
ye

r
N

am
e

Ty
pe

H
ei

gh
t

W
id

th
D

ep
th

H
ei

gh
t

W
id

th
Pa

dd
in

g
St

rid
e

C
ou

nt
M

H
ei

gh
t

W
id

th
D

ep
th

Pr
oc

es
si

ng
 S

te
ps

N
_L

AS
N

_S
U

C
N

_T
N

_C
C

Ti
m

e
[s

]
C

PU
 C

C
C

PU
 T

im
e

[s
]

0
In

pu
t

51
2

51
2

3
1

co
nv

1
C

on
vo

lu
tio

n
51

2
51

2
3

5
5

2
1

32
4

51
2

51
2

32
25

16
58

24
00

10
1

10
19

66
08

0
4.

92
E-

03
62

91
45

60
0

6.
29

E-
01

2
co

nv
2

C
on

vo
lu

tio
n

25
6

25
6

32
3

3
1

1
48

4
25

6
25

6
48

36
23

87
86

56
10

1
10

18
87

43
7

4.
72

E-
03

90
59

69
66

4
9.

06
E-

01
3

co
nv

3
C

on
vo

lu
tio

n
12

8
12

8
48

3
3

1
1

64
4

12
8

12
8

64
18

11
93

93
28

10
1

10
70

77
89

1.
77

E-
03

45
29

84
83

2
4.

53
E-

01
4

co
nv

4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

64
4

64
64

64
60

39
79

77
6

10
1

10
23

59
30

5.
90

E-
04

15
09

94
94

4
1.

51
E-

01
5

co
nv

5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

48
4

32
32

48
11

32
46

20
8

10
1

10
58

98
3

1.
47

E-
04

28
31

15
52

2.
83

E-
02

6
co

nv
6

C
on

vo
lu

tio
n

16
16

48
3

3
1

1
48

4
16

16
48

21
23

36
64

10
1

10
11

06
0

2.
77

E-
05

53
08

41
6

5.
31

E-
03

7
co

nv
7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
48

4
8

8
48

53
08

41
6

10
1

10
27

65
6.

91
E-

06
13

27
10

4
1.

33
E-

03
8

cl
as

se
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
24

4
64

64
24

22
64

92
41

6
10

1
10

23
59

30
5.

90
E-

04
56

62
31

04
5.

66
E-

02
9

cl
as

se
s5

C
on

vo
lu

tio
n

32
32

64
3

3
1

1
24

4
32

32
24

56
62

31
04

10
1

10
58

98
3

1.
47

E-
04

14
15

57
76

1.
42

E-
02

10
cl

as
se

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

24
4

16
16

24
10

61
68

32
10

1
10

11
06

0
2.

77
E-

05
26

54
20

8
2.

65
E-

03
11

cl
as

se
s7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
24

4
8

8
24

26
54

20
8

10
1

10
27

65
6.

91
E-

06
66

35
52

6.
64

E-
04

12
bo

xe
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
16

4
64

64
16

15
09

94
94

4
10

1
10

23
59

30
5.

90
E-

04
37

74
87

36
3.

77
E-

02
13

bo
xe

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

16
4

32
32

16
37

74
87

36
10

1
10

58
98

3
1.

47
E-

04
94

37
18

4
9.

44
E-

03
14

bo
xe

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

16
4

16
16

16
70

77
88

8
10

1
10

11
06

0
2.

77
E-

05
17

69
47

2
1.

77
E-

03
15

bo
xe

s7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

16
4

8
8

16
17

69
47

2
10

1
10

27
65

6.
91

E-
06

44
23

68
4.

42
E-

04

To
ta

l
0.

01
37

11
89

To
ta

l
2.

29
70

94
14

4
In

fe
re

nc
e/

s
72

.9
29

C
PU

 In
fe

re
nc

e/
s

0.
43

5

10 4 64
1.

00
E-

09

2.

50
E-

09
T_

cc
 C

PU
T_

cc
 B

in
Ar

ra
y

B
A-

SS
D

7

Pa
ra

m
et

er
s

N
_S

A
M

_a
rc

h
D

_a
rc

h

In
pu

t F
ea

tu
re

Ke
rn

el
O

ut
pu

t F
ea

tu
re

Pe
rfo

rm
an

ce
 E

st
im

at
io

n

HSLU Cyrill Durrer 55

Embedded Object Detection with Convolutional Neural Networks BAT FS20

La
ye

r
N

am
e

T
yp

e
H

ei
gh

t
W

id
th

D
ep

th
H

ei
gh

t
W

id
th

P
ad

di
ng

S
tr

id
e

C
ou

nt
M

H
ei

gh
t

W
id

th
D

ep
th

P
ro

ce
ss

in
g

S
te

ps
N

_L
A

S
N

_S
U

C
N

_T
N

_C
C

T
im

e
[s

]
C

P
U

 C
C

C
P

U
 T

im
e

[s
]

0
In

pu
t

51
2

51
2

3
1

co
nv

11
C

on
vo

lu
tio

n
25

6
25

6
3

5
5

2
1

32
4

25
6

25
6

32
62

91
45

60
0

1
2

1
98

30
40

0
2.

46
E

-0
2

15
72

86
40

0
1.

57
E

-0
1

2
co

nv
12

C
on

vo
lu

tio
n

25
6

25
6

3
5

5
2

1
32

4
25

6
25

6
32

62
91

45
60

0
1

2
1

98
30

40
0

2.
46

E
-0

2
15

72
86

40
0

1.
57

E
-0

1
3

co
nv

13
C

on
vo

lu
tio

n
25

6
25

6
3

5
5

2
1

32
4

25
6

25
6

32
62

91
45

60
0

1
2

1
98

30
40

0
2.

46
E

-0
2

15
72

86
40

0
1.

57
E

-0
1

4
co

nv
14

C
on

vo
lu

tio
n

25
6

25
6

3
5

5
2

1
32

4
25

6
25

6
32

62
91

45
60

0
1

2
1

98
30

40
0

2.
46

E
-0

2
15

72
86

40
0

1.
57

E
-0

1
2

co
nv

21
C

on
vo

lu
tio

n
12

8
12

8
32

3
3

1
1

48
4

12
8

12
8

48
90

59
69

66
4

1
3

1
14

15
57

76
3.

54
E

-0
2

22
64

92
41

6
2.

26
E

-0
1

3
co

nv
22

C
on

vo
lu

tio
n

12
8

12
8

32
3

3
1

1
48

4
12

8
12

8
48

90
59

69
66

4
1

3
1

14
15

57
76

3.
54

E
-0

2
22

64
92

41
6

2.
26

E
-0

1
4

co
nv

23
C

on
vo

lu
tio

n
12

8
12

8
32

3
3

1
1

48
4

12
8

12
8

48
90

59
69

66
4

1
3

1
14

15
57

76
3.

54
E

-0
2

22
64

92
41

6
2.

26
E

-0
1

5
co

nv
24

C
on

vo
lu

tio
n

12
8

12
8

32
3

3
1

1
48

4
12

8
12

8
48

90
59

69
66

4
1

3
1

14
15

57
76

3.
54

E
-0

2
22

64
92

41
6

2.
26

E
-0

1
3

co
nv

3
C

on
vo

lu
tio

n
12

8
12

8
48

3
3

1
1

64
4

12
8

12
8

64
18

11
93

93
28

1
4

1
28

31
15

52
7.

08
E

-0
2

45
29

84
83

2
4.

53
E

-0
1

4
co

nv
4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
64

4
64

64
64

60
39

79
77

6
1

4
1

94
37

18
4

2.
36

E
-0

2
15

09
94

94
4

1.
51

E
-0

1
5

co
nv

5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

48
4

32
32

48
11

32
46

20
8

1
3

1
17

69
47

2
4.

42
E

-0
3

28
31

15
52

2.
83

E
-0

2
6

co
nv

6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

48
4

16
16

48
21

23
36

64
1

3
1

33
17

76
8.

29
E

-0
4

53
08

41
6

5.
31

E
-0

3
7

co
nv

7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

48
4

8
8

48
53

08
41

6
1

3
1

82
94

4
2.

07
E

-0
4

13
27

10
4

1.
33

E
-0

3
8

cl
as

se
s4

C
on

vo
lu

tio
n

64
64

64
3

3
1

1
24

4
64

64
24

22
64

92
41

6
1

2
1

47
18

59
2

1.
18

E
-0

2
56

62
31

04
5.

66
E

-0
2

9
cl

as
se

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

24
4

32
32

24
56

62
31

04
1

2
1

11
79

64
8

2.
95

E
-0

3
14

15
57

76
1.

42
E

-0
2

10
cl

as
se

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

24
4

16
16

24
10

61
68

32
1

2
1

22
11

84
5.

53
E

-0
4

26
54

20
8

2.
65

E
-0

3
11

cl
as

se
s7

C
on

vo
lu

tio
n

8
8

48
3

3
1

1
24

4
8

8
24

26
54

20
8

1
2

1
55

29
6

1.
38

E
-0

4
66

35
52

6.
64

E
-0

4
12

bo
xe

s4
C

on
vo

lu
tio

n
64

64
64

3
3

1
1

16
4

64
64

16
15

09
94

94
4

1
1

1
23

59
29

6
5.

90
E

-0
3

37
74

87
36

3.
77

E
-0

2
13

bo
xe

s5
C

on
vo

lu
tio

n
32

32
64

3
3

1
1

16
4

32
32

16
37

74
87

36
1

1
1

58
98

24
1.

47
E

-0
3

94
37

18
4

9.
44

E
-0

3
14

bo
xe

s6
C

on
vo

lu
tio

n
16

16
48

3
3

1
1

16
4

16
16

16
70

77
88

8
1

1
1

11
05

92
2.

76
E

-0
4

17
69

47
2

1.
77

E
-0

3
15

bo
xe

s7
C

on
vo

lu
tio

n
8

8
48

3
3

1
1

16
4

8
8

16
17

69
47

2
1

1
1

27
64

8
6.

91
E

-0
5

44
23

68
4.

42
E

-0
4

T
o

ta
l

0.
36

27
80

2
T

o
ta

l
2.

29
70

94
14

In
fe

re
n

ce
/s

2.
75

6
C

P
U

 In
fe

re
n

ce
/s

0.
43

5

1 4 16
1.

00
E

-0
9

2.
50

E
-0

9

M
_a

rc
h

D
_a

rc
h

T
_c

c
C

P
U

T
_c

c
B

in
A

rr
ay

4 Tiles 4 Tiles

P
ar

am
et

er
s

N
_S

A

B
A

-S
S

D
7

w
it

h
 T

ili
n

g
In

pu
t F

ea
tu

re
K

er
ne

l
O

ut
pu

t F
ea

tu
re

P
er

fo
rm

an
ce

 E
st

im
at

io
n

HSLU Cyrill Durrer 56

Zynq-7000 SoC Data Sheet: Overview

DS190 (v1.11.1) July 2, 2018 www.xilinx.com
Product Specification 3

Pr
og

ra
m

m
ab

le
 L

og
ic

Xilinx 7 Series
Programmable Logic
Equivalent

Artix®-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Kintex®-7
FPGA

Kintex-7
FPGA

Kintex-7
FPGA

Kintex-7
FPGA

Programmable Logic
Cells 23K 55K 65K 28K 74K 85K 125K 275K 350K 444K

Look-Up Tables (LUTs) 14,400 34,400 40,600 17,600 46,200 53,200 78,600 171,900 218,600 277,400

Flip-Flops 28,800 68,800 81,200 35,200 92,400 106,400 157,200 343,800 437,200 554,800

Block RAM
(# 36 Kb Blocks)

1.8 Mb
(50)

2.5 Mb
(72)

3.8 Mb
(107)

2.1 Mb
(60)

3.3 Mb
(95)

 4.9 Mb
(140)

9.3 Mb
(265)

17.6 Mb
(500)

19.2 Mb
(545)

26.5 Mb
(755)

DSP Slices
(18x25 MACCs) 66 120 170 80 160 220 400 900 900 2,020

Peak DSP
Performance
(Symmetric FIR)

73
GMACs

131
GMACs

187
GMACs

100
GMACs

200
GMACs

276
GMACs

593
GMACs

1,334
GMACs

1,334
GMACs

2,622
GMACs

PCI Express
(Root Complex or
Endpoint)(3)

Gen2 x4 Gen2 x4 Gen2 x4 Gen2 x8 Gen2 x8 Gen2 x8

Analog Mixed Signal
(AMS) / XADC

2x 12 bit, MSPS ADCs with up to 17 Differential Inputs

Security(2) AES and SHA 256b for Boot Code and Programmable Logic Configuration, Decryption, and Authentication

Notes:
1. Restrictions apply for CLG225 package. Refer to the UG585, Zynq-7000 SoC Technical Reference Manual (TRM) for details.
2. Security is shared by the Processing System and the Programmable Logic.
3. Refer to PG054, 7 Series FPGAs Integrated Block for PCI Express for PCI Express support in specific devices.

Table 1: Zynq-7000 and Zynq-7000S SoCs (Cont’d)

Device Name Z-7007S Z-7012S Z-7014S Z-7010 Z-7015 Z-7020 Z-7030 Z-7035 Z-7045 Z-7100

Part Number XC7Z007S XC7Z012S XC7Z014S XC7Z010 XC7Z015 XC7Z020 XC7Z030 XC7Z035 XC7Z045 XC7Z100

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12.2.3 Datasheets

HSLU Cyrill Durrer 57

Horw, 17. Februar 2020
Seite 1/3

Bachelor Thesis im Studiengang
Elektrotechnik und Informationstechnologie

Aufgabe für Herrn Cyrill Durrer

Embedded Object Detection with Convolutional Neural Net-
works

Fachliche Schwerpunkte
Hardware bauen digital
Modellieren / Simulieren

Einleitung
Am CC ISN wird ein Low-Cost CNN Framework für embedded AI Echtzeit-Anwendungen entwi-
ckelt. Dieses Framework umfasst folgende Komponenten: 1. CNN-Optimierung auf Algorithmus-
Ebene, 2. CNN-Optimierung auf Arithmetik-Ebene 3. FPGA-Beschleunigung der CNN-Inference,
4. FPGA-SoC Plattform.

Aufgabenstellung
Basierend auf diesem Framework soll ein Demonstrator entwickelt werden, welcher als Attraktor
an Messen und Akquisitionsveranstaltungen eingesetzt werden kann. Demonstriert werden soll ein
Single-Shot Detector (SSD) [1], welcher das gleiche CNN sowohl für die Detektion verschiedener
Objekte in einem Bild als auch deren Klassifizierung einsetzt.

In der vorliegenden Arbeit sind dafür folgende Aufgaben zu bearbeiten:

 Erstellen und Trainieren eines SSD-Netzwerkes mit mindestens einem standardisierten Da-
tensatz, wie z.B. [2] oder [3] in der TensorFlow-Umgebung [4]. Dabei kann von einem ge-
gebenen Beispiel wie in [5] ausgegangen werden.

 Optimierung des SSD-Netzwerkes mittels des evolutionären Suchalgorithmus [6] für eine
spätere Echtzeit-Implementierung auf einer FPGA-SoC Plattform mit dem HW-Beschleuni-
ger [7] (die eigentliche Echtzeitimplementierung ist nicht Teil dieser Aufgabe).

 Bewertung des Detektions-Genauigkeitsverlustes durch Anwendung der binären Gewichts-
kodierung [8].

 Bewertung erreichbarer Detektions-Genauigkeiten und Frameraten in Abhängigkeit der zur
Verfügung stehenden FPGA-Ressourcen.

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12.2.4 Project Definition

HSLU Cyrill Durrer 58

Horw, 17.2.2020
Seite 2/3
Diplomarbeit im Fachbereich
Elektrotechnik und Informationstechnologie

Termine
Start der Arbeit: Montag 17.2.2020
Zwischenpräsentation: Zu vereinbaren im Zeitraum 6.4. – 1.5.2020
Abgabe Schlussbericht: Freitag 5. Juni, vor 15:00 im Sekretariat
Abgabe Digitale Doku: Gemäss separater Anweisung der Studiengangleitung
Abschlusspräsentation: Zu vereinbaren im Zeitraum 8.6. – 27.6.2020
Diplomausstellung: Freitag 3. Juli 2020 (Teilnahme obligatorisch!)

Dokumentation
Der gebundene Schlussbericht enthält keine Selbständigkeitserklärung und ist in 3-facher Ausfüh-
rung zu erstellen. Er enthält zudem zwingend

- einen englischen Abstract mit maximal 2000 Zeichen.
- Ein Titelblatt, gleich hinter dem Deckblatt, gemäss Weisungen der Studiengangleitung
- Eine SD-Hülle, innen, auf der Rückseite des Berichtes für den Betreuer

Alle Exemplare des Schlussberichtes müssen komplett und termingerecht gemäss Angaben der Stu-
diengangleitung abgeben werden. Zusätzlich muss eine SD-Speicherkarte mit dem Bericht (inkl.
Anhänge), dem Poster und den Präsentationen, Messdaten, Programmen, Auswertungen, usw. un-
mittelbar nach der Präsentation abgeben werden.
Die gesamte Dokumentation ist zudem gemäss Anweisungen der Studiengangleitung elektronisch
auf einen Server zu laden. Sämtliche abzugebende Teile der Dokumentation sind Bestandteile der
Beurteilung.

Fachliteratur/Web-Links/Hilfsmittel
[1] SSD: Single Shot MultiBox Detector. W. Liu et al. https://arxiv.org/pdf/1512.02325.pdf
[2] Large Scale Visual Recognition Challenge (ILSVRC).

http://www.image-net.org/challenges/LSVRC/
[3] Common Objects in Contest. http://cocodataset.org/#home
[4] TensorFlow - An end-to-end open source machine learning platform.

https://www.tensorflow.org/
[5] SSD from scratch in Tensorflow.

https://jany.st/post/2017-11-05-single-shot-detector-ssd-from-scratch-in-tensorflow.html
[6] M. Kurmann. Optimierung Neuronaler Netze für die FPGA Implementierung. MSE Vertie-

fungs-arbeit 1. Hochschule Luzern – Technik &Architektur 2020.
[7] M. Fischer. BinArray: A Scalable Hardware Architecture for Binary Approximated CNNs.

Master Thesis. Hochschule Luzern – Technik &Architektur 2020.
[8] M. Fischer. Hardware-friendly Weight-Encoding of Convolutional Neural Networks. MSE

Vertiefungsarbeit 1, Hochschule Luzern, 2019.

Embedded Object Detection with Convolutional Neural Networks BAT FS20

HSLU Cyrill Durrer 59

Horw, 17.2.2020
Seite 3/3
Diplomarbeit im Fachbereich
Elektrotechnik und Informationstechnologie

Geheimhaltungsstufe Öffentlich

Verantwortlicher Dozent/Betreuungsteam, Industriepartner
Dozent Prof. Jürgen Wassner juergen.wassner@hslu.ch

Industriepartner CC ISN
 Hochschule Luzern, T&A

Experte Thomas Schmidiger thomas.schmidiger@maxon.ch

Hochschule Luzern
Technik & Architektur

Prof. Jürgen Wassner

Embedded Object Detection with Convolutional Neural Networks BAT FS20

HSLU Cyrill Durrer 60

Pr
oj

ec
t S

ch
ed

ul
e

BA
T

Cy
ril

l D
ur

re
r

Ta
sk

St
ar

t
En

d
St

at
e

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

1.
Fa

m
ili

ar
iz

e
w

ith
 S

SD
, t

ra
in

 a
 ru

nn
in

g
m

od
el

20
02

17
20

03
10

do
ne

1.
1

Re
ad

 p
ap

er
s

&
 m

as
te

r t
he

si
s

20
02

17
20

03
10

do
ne

1.
2

G
et

 S
SD

 to
 ru

n
on

 m
y

co
m

pu
te

r
20

02
18

20
03

03
do

ne
1.

3
G

et
 S

SD
 to

 ru
n

on
 th

e
G

PU
-w

or
ks

ta
tio

n,
 tr

ai
n

m
od

el
20

03
03

20
03

09
do

ne

2.
Pr

ep
ar

e
SS

D
 fo

r H
A

20
03

03
20

04
20

do
ne

2.
1

St
ud

y
th

e
Bi

nA
rr

ay
 c

on
ce

pt
20

03
03

20
03

11
do

ne
2.

2
Ed

it
SS

D-
Im

pl
em

en
ta

tio
n

to
 m

at
ch

 b
in

ar
y

Ap
pr

ox
im

at
io

n
30

03
03

20
04

20
do

ne

3.
Es

tim
at

e
Pe

rf
or

m
an

ce
 (m

AP
)

20
03

11
20

05
13

do
ne

3.
1

Co
m

pu
te

 m
AP

 o
f t

he
 tr

ai
ne

d
ne

tw
or

k
20

03
11

20
03

31
do

ne
3.

2
Co

m
pu

te
 m

AP
 o

f t
he

 B
A

ne
tw

or
k

w
ith

ou
t r

et
ra

in
in

g
20

03
30

20
04

06
do

ne
3.

3
Co

m
pu

te
 m

AP
 o

f t
he

 B
A

ne
tw

or
k

w
ith

 re
tr

ai
ni

ng
20

04
07

20
04

27
do

ne
3.

4
Co

m
pu

te
 m

AP
 o

f t
he

 B
A

ne
tw

or
k

w
ith

 R
eL

U
20

05
04

20
05

13
do

ne

4.
H

ar
dw

ar
e

Im
pl

em
en

ta
tio

n
20

04
27

20
05

13
do

ne
4.

1
Es

tim
at

e
ha

rd
w

ar
e

co
ns

um
pt

io
n

20
04

27
20

05
05

do
ne

4.
2

Es
tim

at
e

in
fe

re
nc

e
sp

ee
d

20
04

28
20

05
13

do
ne

5.
Ad

di
tio

na
l W

or
kl

oa
d

20
05

11
20

06
03

do
ne

5.
1

Es
tim

at
e

CP
U

 w
or

kl
oa

d
fo

r N
M

S
20

05
11

20
06

03
do

ne
5.

2
An

al
yz

e
FB

U
F

an
d

M
em

or
y

Ac
ce

ss
20

05
20

20
06

03
do

ne

6.
D

oc
um

en
ta

tio
n

20
03

09
20

06
07

do
ne

6.
1

Pr
ep

ar
e

do
cu

m
en

t i
n

La
Te

x
20

03
09

20
03

09
do

ne
6.

2
In

te
rm

ed
ia

te
 p

re
se

nt
at

io
n

20
04

13
20

04
21

do
ne

6.
3

Do
cu

m
en

t c
ur

re
nt

 p
ro

gr
es

s
20

03
10

20
05

17
do

ne
6.

4
Fi

ni
sh

in
g

do
cu

m
en

ta
tio

n
20

05
04

20
06

07
do

ne

Le
ge

nd
:

sc
he

du
le

d
w

or
k

ef
fe

ct
iv

e
w

or
k

ef
fe

ct
iv

e
w

or
k

(s
ec

tio
n)

in
 w

or
k

do
ne

do
ne

 (s
ec

tio
n)

ne
w

SW
04

09
.0

3.
-1

5.
03

.
SW

03
02

.0
3.

-0
8.

03
.

17
.0

2.
-2

3.
02

.
SW

01
SW

02
24

.0
2.

-0
1.

03
.

SW
06

23
.0

3.
-2

9.
03

SW
05

16
.0

3.
-2

2.
03

.

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12.2.5 Project Schedule

HSLU Cyrill Durrer 61

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

M
o

Tu
W

e
Th

Fr
Sa

Su
M

o
Tu

W
e

Th
Fr

Sa
Su

SW
15

25
.0

5.
-3

1.
05

.
SW

16
01

.0
6.

-0
7.

06
.

SW
14

18
.0

5.
-2

4.
05

.
SW

10
20

.0
4.

-2
6.

04
.

SW
09

13
.0

4.
-1

9.
04

.
SW

08
06

.0
4.

-1
2.

04
.

SW
13

11
.0

5.
-1

7.
05

.
SW

12
04

.0
5.

-1
0.

05
.

SW
11

27
.0

4.
-0

3.
05

.
SW

07
30

.0
3.

-0
5.

04
.

Embedded Object Detection with Convolutional Neural Networks BAT FS20

HSLU Cyrill Durrer 62

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12.3 Source Code

12.3.1 Dataset Preprocessing

File: Dataset Preprocessing.ipynb

1 """

2 Created on Mar 05 2020

3

4 @author: Cyrill Durrer

5

6 - Preprocessing of the Udacity/Roboflow dataset to match the format required by the

SSD -7 network implementation.

7 - Merging all the different "trafficLight" classes into one

8 - Splitting the dataset into training and validation set

9 """

10 import csv

11 import random

12 import numpy as np

13 from numpy import genfromtxt

14

15 dataset_path = r’./ roboflow_small/’

16 filename = r’_annotations.csv’

17

18 target_training_filename=r’labels_train.csv’

19 target_validation_filename=r’labels_val.csv’

20 target_trainval_filename=r’labels_trainval.csv’

21

22 dataset_size =15000

23 validation_set_size =4000

24

25 #original annotations order

26 column_filename =0

27 column_width =1

28 column_height =2

29 column_class =3

30 column_xmin =4

31 column_ymin =5

32 column_xmax =6

33 column_ymax =7

34

35 #target annotations order

36 target_column_filename =0

37 target_column_xmin =1

38 target_column_xmax =2

39 target_column_ymin =3

40 target_column_ymax =4

41 target_column_class_id =5

42

43 with open(dataset_path+filename , newline=’’) as f:

44 reader = csv.reader(f)

45 csv_data = list(reader)

46

47 len(csv_data)

48

49 #extract columns from original annotations

50 image_filenames =[]

51 xmin =[]

52 xmax =[]

53 ymin =[]

54 ymax =[]

55 label_class =[]

56 for row in csv_data:

57 #omit empty lines in csv

58 if row !=[]:

59 image_filenames.append(row[column_filename])

60 xmin.append(row[column_xmin])

61 xmax.append(row[column_xmax])

62 ymin.append(row[column_ymin])

63 ymax.append(row[column_ymax])

HSLU Cyrill Durrer 63

Embedded Object Detection with Convolutional Neural Networks BAT FS20

64 label_class.append(row[column_class])

65 len(label_class)

66

67 #change classes to class_id

68 class_id =[]

69 class_id.append(’class_id ’)

70 del label_class [0]

71 for class_name in label_class:

72 if class_name ==’car’:

73 class_id.append(’1’)

74 elif class_name ==’truck’:

75 class_id.append(’2’)

76 elif class_name ==’pedestrian ’:

77 class_id.append(’3’)

78 elif class_name ==’biker’:

79 class_id.append(’4’)

80 else:#trafficLight

81 class_id.append(’5’)

82 len(class_id)

83

84 target_order_list =[]

85 for i in range(0,len(class_id)):

86 target_order_list.append ([image_filenames[i],xmin[i],xmax[i],ymin[i],ymax[i],

class_id[i]])

87 len(target_order_list)

88

89 #validation set split

90 validation_set_csv =[]

91 validation_set_csv.append(target_order_list [0])

92 i2=0

93 row_index =0

94 print("Generating validation set with size: ",validation_set_size)

95 for i in range(0, validation_set_size):

96 rn=random.randrange(1, len(target_order_list) -1)

97 current_filename=target_order_list[rn][0]

98 while True:

99 try:

100 row_index = image_filenames.index(current_filename)

101 except ValueError:

102 break

103 validation_set_csv.append(target_order_list[row_index])

104 del image_filenames[row_index]

105 del target_order_list[row_index]

106 print("Successfully generated validation set with ",len(validation_set_csv),"

labels.")

107

108 #Save target csv -files

109 with open(dataset_path+target_training_filename , ’w’, newline=’’) as training_csv:

110 wr = csv.writer(training_csv , quoting=csv.QUOTE_ALL)

111 for row in target_order_list:

112 wr.writerow(row)

113 training_csv.close ()

114

115 with open(dataset_path+target_validation_filename , ’w’, newline=’’) as

validation_csv:

116 wr = csv.writer(validation_csv , quoting=csv.QUOTE_ALL)

117 for row in validation_set_csv:

118 wr.writerow(row)

119 validation_csv.close()

120

121 del target_order_list [0]

122 with open(dataset_path+target_trainval_filename , ’w’, newline=’’) as trainval_csv:

123 wr = csv.writer(trainval_csv , quoting=csv.QUOTE_ALL)

124 for row in target_order_list:

125 wr.writerow(row)

126 for row in target_order_list:

127 wr.writerow(row)

128 trainval_csv.close ()

HSLU Cyrill Durrer 64

Embedded Object Detection with Convolutional Neural Networks BAT FS20

12.3.2 mAP Computation

File: BA-SSD7/mAP computation utils/mAP utils

1 """

2 Created on Tue Mar 24 09:58:29 2020

3

4 @author: Cyrill Durrer

5

6 Mean Average Precision computation utils:

7 - IoU(): Intersection over Union calculator

8 - confusion_values (): calculates true positives , predicted positives and ground

truth positives

9 - area_under_curve (): calculates area under curve as right riemann sum (for pr-

curves usually smaller than the true area under the curve)

10 """

11

12 import numpy as np

13

14 def IoU(ground_truth_coordinates ,prediction_coordinates):

15 xmin_p = prediction_coordinates [2]

16 ymin_p = prediction_coordinates [3]

17 xmax_p = prediction_coordinates [4]

18 ymax_p = prediction_coordinates [5]

19

20 xmin_gt = ground_truth_coordinates [1]

21 ymin_gt = ground_truth_coordinates [2]

22 xmax_gt = ground_truth_coordinates [3]

23 ymax_gt = ground_truth_coordinates [4]

24

25 if xmax_p <xmin_gt or ymax_p <ymin_gt or xmax_gt <xmin_p or ymax_gt <ymin_p:

26 #IoU computation: no overlap , returning 0

27 return 0.0

28

29 area_p = (xmax_p -xmin_p)*(ymax_p -ymin_p)

30 area_gt = (xmax_gt -xmin_gt)*(ymax_gt -ymin_gt)

31

32 area_intersection = (min(xmax_gt ,xmax_p)-max(xmin_gt ,xmin_p))*(min(ymax_gt ,

ymax_p)-max(ymin_gt ,ymin_p))

33

34 area_union = (area_p+area_gt)-area_intersection

35

36 IoU_value = area_intersection/area_union

37 return IoU_value

38

39 def confusion_values(y_pred_decoded ,gt_labels ,IoU_threshold =0.45 , nof_classes =5):

40 true_positives=np.zeros(nof_classes)

41 gt_boxes=np.zeros(nof_classes)

42 pred_boxes=np.zeros(nof_classes)

43 precision=np.zeros(nof_classes)

44 recall=np.zeros(nof_classes)

45

46 for i in range(len(y_pred_decoded)):

47 pred_boxes[int(y_pred_decoded[i,0]) -1]+=1

48

49 for i in range (len(gt_labels)):

50 gt_boxes[gt_labels[i,0] -1]+=1

51 for j in range (len(y_pred_decoded)):

52 if gt_labels[i,0]== y_pred_decoded[j,0]:

53 if IoU(ground_truth_coordinates=gt_labels[i],prediction_coordinates

=y_pred_decoded[j]) >=IoU_threshold:

54 true_positives[gt_labels[i,0] -1]+=1

55 y_pred_decoded=np.delete(y_pred_decoded ,j,0)

56 break;

57 return true_positives , pred_boxes , gt_boxes

58

59 def area_under_curve(x, y):

60 if len(x)!=len(y):

61 print("Error: unable to calculate area under curve: arrays of different

size. Returning 0.")

62 return 0

HSLU Cyrill Durrer 65

Embedded Object Detection with Convolutional Neural Networks BAT FS20

63 area_under_curve=x[len(x) -1]*(2*y[len(x) -1])/2

64 for i in range(len(x) -2,0,-1):

65 area_under_curve +=(x[i]-x[i+1])*(y[i]+y[i+1])/2

66 last_x=x[i]

67 return area_under_curve

HSLU Cyrill Durrer 66

