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Abstract Deutsch 
Im Rahmen dieser Arbeit wurde eine Demonstrator-Infrastructur entwickelt, welches als 
Konzeptachweises den Prozess eines «Firmware updadates over the air» in einem LoRaWAN 
Netzwerk an mehrere «Nodes» gleichzeitig aufzeigen kann. Neben einer selbst entwickelten 
Hardware, die jene Nodes im Feld simuliert, und einem FirmwareOverTheAirUpdate-server (FUOTA), 
wurde ein Protokoll erarbeitet, das mit Hilfe von vordefinierten Spezifikationen der LoRa-Alliance 
ermöglicht, Firmware Patches parallel an eine Gruppe von Nodes zu senden. Ein speziell entwickelter 
Bootloader kann diesen Patch dann mit der aktuellen Firmware zu einer neuen Firmwareversion 
zusammenführen. Der schlussendlich entwickelte Demonstrator umfasst einen FUOTA-server, 
LoRaWAN Netzwerkserver, Gateway und eine LoRaWAN node. Der Demonstrator ist einer der ersten 
kompletten Beispielimplementierung des Konzepts «Firmware update over the air» in einem 
LoRaWAN Netzwerk und kann für zukünftige Entwicklungen und Recherchen als Anleitung dienen. 
 
 
 
Abstract Englisch 
In the scope of this thesis, a demonstrator infrastructure was developed as a proof-of-concept, which 
can demonstrate the process of a firmware update over the air in a LoRaWAN network to several 
nodes simultaneously. Besides a self-developed hardware, which simulates the nodes in the field and 
a FirmwareOverTheAirUpdate-server (FUOTA), a protocol was developed that allows to send firmware 
patches in parallel to a group of nodes using predefined specifications of the LoRa-Alliance. A 
specially developed bootloader can then merge these patches with the current firmware to create a 
new firmware version. The final version of the developed demonstrator includes a FUOTA server, 
LoRaWAN network server, gateway and a LoRaWAN node. The demonstrator is one of the first 
complete example implementations of the concept of firmware update over the air in a LoRaWAN 
network and can serve as a basis for future developments and research.  
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CHAPTER 1. INTRODUCTION

1. Introduction

This document contains the documentation of the project work done in the context of
the thesis for the Master of Science in Engineering by Corsin Obrist. The client of the
project is the company SensDRB and the Lucerne University of Applied Sciences and
Arts, which already did different projects in cooperation in the area of LoRaWAN. In the
latest of these projects, a LoRaWAN node, titled Tardigrade, was developed. Since IoT
devices can be deployed individually and their functionalities are constantly improved,
it is necessary to be able to update such devices in the field. Because such IoT devices
are often installed in poorly accessible terrain, it is necessary to make the process of
firmware updating customer-friendly and resource-optimized. One possible solution is
updating these IoT devices over the air.
The goal of the project is to channel the knowledge gained in the previous work [52] [53]
and to develop a demonstrator to enable a parallel multi-device firmware update over
the air with the use of the ultra low bandwidth LoRaWAN network. Many factors come
into play for the development of such a demonstration. First, it must be ensured that
all necessary security aspects are fulfilled. On the other hand, the restrictions of the
LoRaWAN technology have to be met. Furthermore, nodes have to be developed and
must be configured in the field in such way that a new, secure firmware can be loaded
and started. Since there are usually several nodes within in a radius of a few kilometers,
all these nodes should be updated in parallel to gain efficiency.
This work focuses on four key points. One is the research of existing publication in
the field of LoRaWAN and the firmware update over the air process. Another is to
create a hardware shield for the LPC55S16-EVK to enable a LoRaWAN connectivity
and additional functionality which then simulates the LoRaWAN nodes in the field.
Further, a LoRaWAN FUOTA server that handles the "over the air" process and the
whole communication has to be set up. Then, the node needs to be able to reprogram
itself after a full update is received. After that, the whole process has to be tested and
its results have to be presented.
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2. Terms and Definitions

The following chapter provides an overview of the abbreviations used in the document
and their full term.

ABP Activation by Personalization

CLI Command Line Interface

DSBL Dual image Secondary Boot Loader

EVK Evalution Kit

FW Firmware

FUOTA Firmware Update Over The Air

GNSS Global Navigation Satellite System

HW Hardware

IoT Internet-of-Things

ISM Industrial, Scientific and Medical Band

ISR Interrupt Service Routine

LDPC low-density parity-check

LNS LoRaWAN Network Server

LPWAN Low Power Wide Area Network

OS Operating System

OTA Over The Air

SBL Secondary Boot Loader

SW Software

TTN The Things Network

TTS The Things Network
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CHAPTER 2. TERMS AND DEFINITIONS

NVM non volatile memory

UUID Universally Unique Identifier
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CHAPTER 3. BACKGROUND

3. Background

3.1. Context

The company SensDRB develops smart sensor systems which are used for monitoring
the content of farming industries, among other things. The distributed sensors trans-
mit measured values such as temperature, humidity, water or grain quality or they are
used to monitor the vital parameters of productive livestock via LoRa to an available
LoRaWAN network. However, these sensors are often installed in non-urban areas. In
these non-urban areas there is often no coverage of terrestrial communication techniques
like wireless LAN, GSM or even LoRaWAN.

In previous work, a sensor node was developed, which is able to communicate in ter-
restrial LoRaWAN infrastructures as well in non-terrestrial satellite systems. For the
non-terrestrial communication, the sensor uses the infrastructure of Lacuna. In this
setup the sensor can only communicate in an unidirectional way. This means the sensor
is only able to send uplink messages from the sensor to the satellite.

3.2. Purpose of this Thesis

As IoT devices take on increasingly important roles in industry, the security of these
devices must be ensured. Devices that deliver incorrect data due to software errors or
devices that are deliberately manipulated, must be able to be updated through software
patches. There is always the possibility to update such IoT devices physically. But re-
garding the fact, that usually such devices are installed in non-urban areas the approach
to update these IoT devices over the air is crucial. This includes the possibility to update
devices, which deliver their data unidirectional via a satellite network.
This thesis is intended to connect the various components of a LoRaWAN firmware up-
date over the air to serve as a basic fully operating example for the general public and
to perform first performance tests of the FUOTA technology in the LoRaWAN network.
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CHAPTER 3. BACKGROUND

3.3. Preliminary Work

As part of another project in prior to this thesis, the basic setup to run a firmware
update process over the air in a LoRaWAN network was established. This included a
literature search using the keywords LoRaWAN, FUOTA, OTA, LoRaWAN security,
patch programming and bootloader. The components for such an update were detected
and the corresponding software stacks and server implementations where installed and
ported to fit the use-case. A bootloader was developed, which is able to boot an image
from different flash regions in the LPC55S16 microcontroller. The basic process of
sending software image fragments form server side per unicast to a LPC55S16 based
node via a private LoRaWAN network was established.

3.4. Requirements

FW Update
Server

local/mobile LoRaWAN
infrastucture Node

LoRa

Figure 3.1.: Blockdiagram demostrator.

From the goal of this thesis, visualized in the block diagram 3.1, following vision is
derived:

Building a demonstrator, that allows running parallel multi-devices
firmware updates over the air using a local LoRaWAN network.

Based on this vision, following key requirements were extracted:

• Update server with a user interface, where the user can control the whole process

• Own hosted LoRaWAN network server

• Gateway hardware and gateway software driver

• LoRaWAN node based on the LPC55S16-EVK

• Integration of the LoRaWAN multicast and fragmented data block transport pro-
tocol

• Secure bootloader

• Patch algorithm to build a delta update file

9



CHAPTER 3. BACKGROUND

3.5. Procedure

At the beginning of this project, an extensive literature research was conducted in various
areas, namely firmware update over the air, LoRaWAN multicast, LoRaWAN fragmented
data block transport and delta update. The results and functions of the preliminary
work were analyzed in order to improve the implementation of the new firmware up-
date process. Subsequently, the project was divided into individual areas, hence smaller
subtasks. After the planning and research, the hardware based demonstrator node as
a shield for the LPC55S16-EVK had to be developed. As a next step the full porting
of the LoRaMac-node software stack had be done to give the node the possibility to
communicate in the LoRaWAN network.
After that, the server side had to be implemented and set up, which includes the Lo-
RaWAN network server with its own gateway and an FUOTA server. Next to it the
patch file generation had to be taken into account to build a delta update and reduce
the amount of data which has to be sent over the infrastructure. Then the multicast
protocol and fragmented data block protocol had to be implemented on the server as on
node side. As the final step, a bootloader had to be implemented on the node to merge
the delta file back to a full image and to boot the new image on the node.

3.6. Approach

FW Update Server

Gateway

LoRaWAN Node
local LoRaWAN
infrastructure

local LoRaWAN
Network Server

(LNS)

Figure 3.2.: Building Blocks of Approach.

Figure 3.2 shows the building blocks of the approach. A single block tackles one or
multiple challenges, but all together build the complete firmware update over the air
infrastructure which meets the requirements. While some details of a single block can be
defined or managed separately, other parts are related and need to be designed togehter.
The approach used in this project was to execute research for every building block
separately and combine the output in the concept for the whole infrastructure needed.
The FW Update Server can be split into user interface and process control algorithm.
Local LoRaWAN infrastructure is split into LoRaWAN network server and gateway.
The LoRaWAN network server includes a software stack which handles the LoRaWAN
protocol and forwards the messages to application server and to the gateways. The
gateway includes a LoRaWAN hardware concentrator unit and a software stack, which
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drives the concentrator and forwards the messages to the node or to the network server.
The LoRaWAN node includes the hardware for a demonstrator node and its software
drivers. This contains the LoRAMac-node software stack for the communication in the
LoRaWAN net and its hardware like the LoRa transceiver and an antenna. It can
be seen, that the identified building blocks are related to each other. Nevertheless, it
was considered useful to treat individual blocks separately from each other in order to
simplify the implementation process.

3.7. Challenges

The main challenge is to set up the infrastructure needed to perform a firmware update
over the air. This includes the presence of a FUOTA server, which is able to set up a
FUOTA process and guaranties a stable connection to the node. Furthermore, the node
has to be able to receive such data-packages and store them locally to then assemble
these packages to a FW image and load it via a bootloader. As a next step, this data
should be encrypted and signed, so that authorized data can be loaded by the node.
To enable such a process the new LoRaMac-node softwate stack of Semtech [58] has to
be ported to the LPC55S16 controller. This controller will be used to simulate a node
in the field. Like the ported stack also a bootloader has to be implemented which allows
to reboot the node automatically with the new firmware.

11
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4. Scientific research

In this chapter, the basics regarding IoT, LoRa and LoRaWAN will be explained followed
by the results of the literature search using the keywords FOTA and DELTA update.

4.1. Basics

This section will introduce the basic communication technologies used in this master
thesis.

4.1.1. Internet of Things in general

The IoT is an ever-growing part of the information world. In the year 2021, there were
already over 11 billion active devices, and this number is expected to grow to 27 billion
by 2025 (see 4.1). Especially in the home automation sector, new use cases are constantly
emerging for smart devices that network with each other, to perform more and more
functions.

Figure 4.1.: Number of IoT devices 2021 [32].
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The most important capability of IoT devices is the low-power wireless communication.
There are a wide variety of protocols for this, each with different areas of application.
While W-LAN, Bluetooth, Zigbee or other radio standards are often used for short
distances in the home, devices in other locations must rely on alternative technologies.
LPWAN transmissions are one such group of technologies. These have the advantage
of a much longer range and better energy efficiency than most other radio standards,
but at the cost of bandwidth. Figure 4.2 shows LPWAN compared to other wireless
communication protocols. LPWAN technologies are mostly used when end devices are
installed in locations that are difficult to reach with other technologies or when energy
efficiency is of high importance. In this work, LoRaWAN is used as LPWAN technology.

Figure 4.2.: Different IoT communication technologies [16].

However, range and power consumption are not the only important issues in IoT. One
issue that is often neglected is the security of connected devices. Between 2017 and
2018 alone, the number of known malware for IoT devices nearly quadrupled [38]. But
malware is not the only threat. Many IoT devices send data inadequately protected,
enabling attacks on that data and by extension, IoT infrastructure. Espionage, manip-
ulation of data and complete takeover of systems are exemplary attack scenarios.

Another relevant topic in IoT security are firmware updates; they enable manufacturers
to introduce new functions to devices and in the event of security incidents, to fix them
without the user having to take action. It is extremely important that the updates are
carried out in a secure manner, so attackers are not able to insert counterfeit firmware
into a device.
Combining firmware updates and end devices, that use an LPWAN protocol for data
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transmission, creates a whole new challenge. While some techniques for IP-based tech-
nologies already exist, such as W-LAN, updates via LPWAN are still largely unexplored.
The reason for not being able to use the classical protocols can be found in the limita-
tions of LPWAN technologies. LoRaWAN, for example, has high limitations in terms of
data rate and transmission time and does not have a standardized transport protocol,
which could be used to compensate for losses during data transmission[15].

4.1.2. LoRaWAN

LoRaWAN is a LPWAN solution for IoT applications that allows small amounts of data
to be transmitted wirelessly over long distances in an energy-efficient manner. It consists
of LoRa radio, a protocol for physical data transmission, and LoRaWAN itself, a MAC
protocol that builds on LoRa and provides a standardized method to transfer data over
LoRa[7].

4.1.2.1. What is LoRa

LoRa is a frequency modulation method developed by Semtech, which allows wireless
communication between two communication partners [39]. It is thus a physical protocol
(OSI layer 1), which only performs the modulation of the physical data transmission.
LoRa uses frequency modulated chirps to encode symbols. The chirp modulation used
uses so-called "chirps" to transmit symbols. In this process, the frequency continuously
changes over a defined period of time across the bandwidth. The transmitted symbols
are defined by the beginning of the chirp. Figure 4.3 shows what such a message looks
like.

Figure 4.3.: LoRa frequenz hop symboles [28].
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The primary advantages offered by this modulation, compared to FSK or PSK, are
its long range and robustness against noise. Both are determined by the spreading
factor used and the bandwidth [56]. The spreading factor determines how long a single
chirp lasts, i.e. how wide it is "spread". A higher factor means wider symbols, which
provides longer transmission ranges, but also leads to slower data transmission. In LoRa,
spreading factors of 7 to 12 are defined, allowing transmission speeds from a maximum
of 37.5 kbit/s to a minimum of 300 bit/s [31]. The bandwidth is fixed at 125 kHz, 250
kHz or 500 kHz and also affects the range and speed of the signal. The specific choice
of these parameters is determined by LoRaWAN.
The frequencies that LoRa uses depend on the region. In Europe, it can transmit on
868 MHz or on 433 MHz. It is important to mention that these frequencies are license-
free spectra, so no license fee has to be paid for their use. In compensation, there are
time restrictions on transmission that all devices must adhere to. These restrictions are
explained in chapter 4.1.2.7.

4.1.2.2. What is LoRaWAN

LoRaWAN is a MAC protocol (OSI layer 2) that builds on LoRa (but can also be used
with FSK), and contains some elements of a network protocol (OSI layer 3) [39]. It
defines a message format, as well as MAC commands to control the transmission. The
parameters for the underlying LoRa transmission are defined by LoRaWAN.
The specification is divided into two parts. The first part is the specification itself, which
defines the message format, the MAC commands, and the flow [7]. As an extension
to this, there are the regional parameters, which define specific settings for LoRa, as
well as some adaptations or additions to the LoRaWAN protocol, depending on the
geographical region [5]. A LoRaWAN network consists of several groups of nodes and
is organized in a star topology, as shown in Figure 4.4. In the center is the network
server, which handles server-side management of the LoRaWAN network and provides
an API for client LoRaWAN applications to manage, send and receive messages. This
server communicates with multiple gateways over an TCPIP connection. The primary
task of these gateways is to send the LoRaWAN packages received by the network server
to the end devices via LoRa and vice versa. Accordingly, they serve as an interface for
the change of the physical medium. The end devices communicate with one or more
gateways to transmit their data.

In this process, the LoRaWAN protocol is only used between the gateway and the end
devices. No standard is defined for the remaining paths and the format thus depends
on the specific applications used. In this context, LoRaWAN performs a number of
tasks, which are explained further below. These include the different communication
classes that can be used to transmit data, the two ways to add devices to a LoRaWAN
application, the encryption and integrity checking of transmitted data as well as the
different MAC commands for controlling the connection [4].
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Figure 4.4.: LoRaWAN topology [6].

4.1.2.3. Communication modes in LoRaWAN

LoRaWAN supports three different modes for data transmission. Each of these modes
have specific use cases, as well as advantages and disadvantages, which are listed below.

Class A
Class A enables bidirectional communication between the node and the gateway. The
node is able to send uplink messages (node to gateway) at any time. After sending an
uplink message, the node opens sequently two timeslot after each other during which it
can receive a message from the gateway. These two timeslots are the only possibility for
the server to send a message down to the node. In Figure 4.5, the timeslots in which the
node is waiting for a downlink message from the gateway after an uplink message (red)
are marked in green.

Figure 4.5.: LoRaWAN Class A communication timing [70].
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Class A Nodes:

• are often battery operated

• have the lowest energy consumption

• have long interval times (sleep mode) between uplinks

• have high downlink latency

4.1.2.4. Class B

Class B adds scheduled receive times to the node. This means that the node can not only
receive messages in the two fixed timeslots after an uplink, it also periodically opens ad-
ditional timeslots for downlink messages. To use this technology, a time synchronization
between node and server is necessary. Nodes operating in class B mode are also called
beacons. In figure 4.6 the periodic timeslot (ping slot) is shown in orange. Further it
can be seen that the class A function (green timeslots) remains.

Figure 4.6.: LoRaWAN Class B communication timing [70].

Class B nodes have lower latency than class A nodes because they are reachable at
periodically preconfigured times and do not need to send an uplink message to receive
a downlink. The energy consumption is higher for class B nodes than for class A, since
the node spends more time in active mode (orange, red, green boxes in Figure 4.6).

4.1.2.5. Class C

Class C nodes extend Class A by keeping receive windows open continuously. The
advantage of Class C is that data can be received at any time. However, the price
for this is a high energy consumption, since the terminal device must keep the LoRa
transceiver active at all times. Multicast transmission can be take into account here.
Class-C should only be used when large amounts of data have to be transmitted over
a short period of time, or when time-critical transmissions take place. In this case, if
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nodes needs to spend a lot of time in class C mode, a permanent power supply need to
be installed, since this mode consumes too much energy for a battery operation (figure
4.7).

Figure 4.7.: LoRaWAN Class C communication timing [70].

4.1.2.6. Enctyption in LoRaWAN

The LoRaWAN specifications implements a series of keys which provides a secure com-
munication in the LoRaWAN network. This means, that the communication between
LoRaWAN network server and the node is encryptet plus there is a end-to-end encryp-
tion of the application itself to the node. All keys used in the communication protocol
are 128 bits long and are based on the AES method [72].

Figure 4.8.: Overview: LoRaWAN encryption [30].
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• NwkSKey: Network Session Key
The network session key is used for interaction between the node and the network
server. This key is used to validate the integrity of each message through its
Message Integrity Code (MIC) check. This MIC is similar to a checksum, except
that it prevents intentional tampering of a message. In the backend of network
server, this validation is also used to map a non-unique device address (DevAddr)
to a unique DevEUI and AppEUI.

• AppSKey: Application Session Key
The Application Session Key (AppSKey) is used to encrypt and decrypt the pay-
load data. The user data is fully encrypted between the node and the application
server. This means that no one other than the user is able to read the contents of
messages that are sent or received.

These two session keys (NwkSKey and AppSKey) are unique per device and per session.
If the node is activated dynamically (Over The Air Activation: OTAA), these keys
are regenerated with each activation. If the node is statically activated (Activation by
personalization: ABP), these keys remain the same.

• AppKey: Application Key
The application key (AppKey) is known only to the node and the application.
Dynamically activated devices (OTAA) use the application key to derive the two
session keys during the activation process.

Figure 4.8 shows an overview of the security concept behind the LoRaWAN protocol. A
detailed description of this security concept can be found in the project work VM1 by
Mr. Bienz [17].

4.1.2.7. Restrictiond of LoRaWAN

In principle, the country-specific guidelines specified by the LoRa Alliance 1 apply to
the use of the LoRaWAN protocol.
The main regulation is the duty cycle. This specifies how often (in terms of time) a
node is allowed to send and receive data in the ISM band over the course of a day
(table 4.1). Different data rates can be set via the parameterization of the network.
Basically, the parameterization must be adapted to the respective situation and to the
particular use case that the network/gateway/node must cover. With a small „airtime„
time setting, a higher data rate can be achieved, but the data can only be sent and
received over smaller distances. Table 4.2 gives the setting for the ISM band 863-870,
which is reserved for LPWAN applications in Europe, to achieve the highest data rate
in the LoRaWAN network.

1The LoRa Alliance® is the fastest growing technology alliance. A non-profit association that has
become one of the largest alliances in the technology sector, committed to enabling large scale de-
ployment of Low Power Wide Area Networks (LPWAN) IoT through the development and promotion
of the LoRaWAN® open standard. [41]
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continents / countries frequency band bandwidth duty cycle

Europa EU683-870 125KHz, 250kHz 1%
EU433 500kHz

Amerika US902-928 125kHz, 500kHz no limits
China CN470-512 125kHz, 250kHz 1%
Asia AS923 125kHz 1%

Korea KR920 125kHz, 250kHz 1%
India IN865 125kHz, 250kHz no limits

Table 4.1.: LoRaWAN dutycycle restrictions [71].

Network max Payload airtime 1% max duty cycle

SRF7/BW250 222Bytes 184.4ms 195msg/hour 43.29kByte/hour
1204Byts/s

SRF7/BW125 222Bytes 368.9ms 97msg/hour 21.53kByte/hour
602Byts/s

Table 4.2.: LoRaWAN max bandwidth.

On the infrastructure side, provider-dependent rules apply. For example, various providers
have a fair access policy with which they want to prevent overloading of the infrastruc-
ture. The fair access policy specifies the transmission and reception rate at which the
user of the infrastructure may use the channel. In other words, how many times a day
the customer may send downlink and uplink data. Table 4.3 lists the fair access policy
for two providers.

provider uplink downlink

TTN 30s 10 msg/day
Swisscom 144 msg/day 14 msg/day

Table 4.3.: Fair Access Policy.
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4.2. Over the air firmware update

The scientific research was split into three categories FUOTA in LoRaWAN, Binary patch
files and Bootloader. The authors in publication [10] presented a specified overview of
the different components which are needed for the process of a firmware update over the
air for IoT devices.
Because communication channels used in IoT devices are often limited in the bandwidth
and the fact, that the IoT devices are often battery driven, the concept of frequently
sending a complete updated firmware image to these nodes does not fit. This limitation
triggered the development of the first incremental programming schemes. These schemes
avoid sending the whole firmware image every time a new update has been released and
just transmit commands to the nodes, on how to reconstruct the new firmware locally,
utilizing parts of the currently run firmware, each node already has stored in its flash
memory.
In order to update the modern IoT networks incrementally, a firmware update server
should first create the new firmware image and then the resulting delta script, computing
the common segments between the new and the previous firmware versions. Afterwards,
the delta script is disseminated within the network, utilizing a multi-hop protocol, in
order to reach all the nodes. Further, each node should interpret the received script,
execute the commands found inside, and reconstruct the new firmware locally. Once this
last step has been completed, the node can be updated replacing the firmware it currently
runs, with the one it just reconstructed (loading phase). This process is visualized in
figure 4.9.

Figure 4.9.: Firmware update process essential stages [36].

The authors divided the firmware update over the air process in four essential operations.

• Firmware similarity improvement:
Comparing of the new firmware source code with the old one, in order to mitigate
function or variable shifts and increase the similarity between the built firmware
versions [10].

• Differencing algorithm application:
Production of a delta or patch script by using a differencing algorithm for com-
paring the old firmware image with the new one. The delta script encodes a set of
instructions that, once applied on the old firmware, enable the reconstruction of
the new one. In general, a delta script should be of minimal size (smaller than the
original firmware image), since the goal is to reduce the data transmitted to the
node [10].
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• Delta script dissemination:
Responsible for orchestrating the efficient and reliable firmware (delta script) distri-
bution to the IoT nodes by applying a suitable dissemination protocol that focuses
on transmitted data minimization [10].

• Update application:
Refers to the OTAP stage that takes place on the node and includes reconstructing,
verifying, installing and executing the new firmware [10].

The authors of the work [10] presented some techniques to improve the firmware simi-
larity. Following these techniques will be sum up.

Slop-Regions:
A slop region is defined as the free area of memory immediately after a function’s code
in flash memory where a function can grow or shrink without moving other functions.
When a function grows, part of its slop region is used without moving other functions.
When a function shrinks, its slop region grows to occupy the removed portion of the
function, so other functions that follow are not displaced. In addition to program code
being mapped to flash memory, slop regions can also be used between the .data and .bss
sections in RAM to avoid global variable offsets. In order to implement this feature, the
linker must be modified, with the risk of degrading the performance of the generated
code. A disadvantage of using slop regions is that excessive fragmentation of memory
may occur, as some regions may contain code while others remain unused. Finally,
special care must be taken when a function outgrows its slop region and may need to be
relocated to a completely different memory region.
Position-Independent Code (PIC):
Position-Independent Code is an option that can be set during code compilation, where
the code is compiled to execute normally, regardless of the absolute memory address in
which it is stored. All references and destination addresses refer to the memory address
of the calling instruction. Thus, when displacements occur, the „relative„ destination
addresses are not affected. However, due to embedded device hardware limitations, these
relative (instruction) jumps can only be executed within certain offsets.
Indirection-Tables:
When linking the firmware image, an indirection table is created that is stored in a fixed
location in flash memory. In these tables, there are entries for each function called,
along with the memory address where it is stored. All function calls are replaced by
appropriate jumps to the corresponding entries in the table. The advantage of this
technique is that when a function is relocated, only its entry in the indirection table is
affected (updating the memory address), while the calling instructions are not. Since
the function calls are executed indirectly through the table, the runtime latency of the
function call increases. Further, the size of the table is proportional to the number of
functions called. This means that the table also takes up a large area in flash memory
for complex programs with many function calls.
Interrupt-Service-Routines-Pinning:
Changes in the firmware code can shift the interrupt service routines, which affects the
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memory addresses contained in the interrupt vector table. One way around this is to
map the interrupt service routines to fixed memory locations in the program flash.
Address pinning of global variables:
This technique was proposed in Hermes [54] to ensure that the global variables in each
firmware version are stored in a specific order and thus at the same address. Both
the defined and undefined global variables are recognized and stored in two different
structures, so that if the update does not define additional global variables, it is ensured
that the memory addresses of the current variables are not affected. Further, a slop area
is inserted between the .data and .bss sections to avoid address shifts of the undefined
variables when the .data section is reduced or increased.
In-Place-Patching:
With the strategy of Over-The-Air-Programming (OTAP), which is based on in-place
code updating and uses code patches, system reboots can be avoided and the available
memory can be used more efficient. The key idea in OTAP is to only transfer the parts
of the firmware that have actually been changed (patches). The update module, which
must already be included in the base firmware, then copies the patches directly into the
flash memory. A risk with this technique is that by updating the firmware image in real
time, the state of the firmware stored in memory can become inconsistent if the patches
are transferred incorrectly. A countermeasure is to pause all instructions that contain
references to functions that are being updated until the update process is complete.
Since a patch can not only add to an existing firmware but also change it, meaning
that changes can be made to the already existing functions, these code changes must be
atomic2. The principle of OTAP is the same as that of delta update, except that the
flash process is executed directly without a boot sequence. To keep the patches as small
as possible, the same techniques described here must be used.
Dynamic linking of modified firmware patches:
With this OTAP scheme, only the modified sections need to be transferred, since the
dynamic linker relinks the image when it is received on the node and reloads it, replacing
the previous image in the program flash. A limitation of this technique, however, is that
it requires an OS or sophisticated linker that can properly resolve the addresses. Such a
linker or OS is memory intensive and not usable on many IoT devices.
Replaceable Components:
The concept of replaceable components is based on the Elon reprogramming scheme [22]
and has been implemented and tested for the TinyOS operating system. However, part
of the basic principle can be applied to other platforms and baremetal programs. It
is based on the fact that specific sections are allocated to the program code in Flash.
When the first (base) version of the firmware is created, these sections are defined and
not changed throughout the life of the node. For example, the flash can be divided into
the sections Initialization, LoRa, Peripherals and Update. If a change is now made to
the LoRaWAN stack, in worst − case only the entire LoRa section needs to be updated.

2In computer science, a process (which can consist of any number of individual pieces) can be called
atomic if it is ensured that it cannot be influenced by other processes that may be running simulta-
neously. [13]
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4.2.1. FUOTA in LoRaWAN

There are not many publications regarding firmware updates over the air in the field
of LoRaWAN. The authors from the publication „How to make Firmware Updates
over LoRaWAN Possible„ [2] investigated the new multicast, fragmentation and time
synchronization specifications from the LoRa-Alliance regarding the integration of a
firmware update process in the LoRaWAN network. A basic FUOTA architecture figure
4.10 was presented. The interfaces with solid lines are described in the LoRa Alliance
specifications, otherwise, they are out of the LoRa specifications scope and have to be
implemented by the user. The authors developed a simulation tool, which gives some

Figure 4.10.: FUOTA architecture blockdiagram [2].

insights about the scalability and the performance of the protocols specified by the LoRa
Alliance. In the following section these protocols well be further explained.

4.2.1.1. Multicast

The objective of a multicast design is to let a group of class A devices receive the same
downlink transmission at the same time. This requires that the group of devices are at
the same time in a mode where they always listen to messages coming from the network
and share the same security keys to be able to decrypt the same downlink messages.
For this, the multicast specification defines a command to set up a receive-window of
class C into a group of class A devices. Additionally, the specification defines commands
to instruct the group of devices to switch to class C and switch back to class A at the
end of the receive-window. All commands of this specification are sent to each device
individually using unicast messages on port 200.

4.2.1.2. Clock synchronization

LoRaWAN devices usually do not have access to accurate clocks via GPS or other tech-
niques. Consequently, due to the clock drifts, their time keeping is not reliable enough
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to perform McClassCSessionReq commands. Therefore, the clock synchronization spec-
ification defines a way for the devices to correct their clock skews. The basic idea is
that the network has access to an accurate GPS clock that can be used to correct the
devices’ clocks. All commands of this specification are sent as application messages on
port 202. The Command AppTimeReq is sent by a device to ask for a clock correction.
The command includes the device time, which indicates the current device clock. The
time is again expressed as the time in seconds since start of the GPS epoch 3 modulo
232. Next, the device gets AppTimeAns back, including the time correction in seconds.
The expected accuracy of this approach is around one second, which is enough to run
the multicast commands efficiently.

4.2.1.3. Fragmentation

A firmware image is usually quite big and cannot fit into one downlink packet but
needs several packets. LoRaWAN links are lossy and thus packet losses are inevitable.
Consequently, there is no an efficient way to know which packets were lost at which
devices during a multicast session. Therefore, a mechanism to handle big data blocks
and to recover packet losses in a scalable manner is required. For this, the fragmentation
specification supports all necessary commands to transport a large data block to one
device or to a group of devices. All commands of this specification are sent as application
messages on port number 201. The fragmentation algorithm proposes adding a simple
forward error correction code to the original firmware image before sending it. This
allows devices to autonomously recover a certain ratio (based on the code used) of the
lost transmissions without requesting re-transmission of lost fragments. This is done by
first, chunking the original firmware image to fragments equal in size and then adding
redundancy fragments, which are XORed to some of the original fragments. Devices
can use redundant fragments to reconstruct their missing fragments. In this case, 5%
redundancy added to the original firmware image allows devices to loose roughly 5% of
the incoming transmissions and still be able to reconstruct the original firmware.
The algorithm is based on the LDPC-codes, but differs by using fragments. It is further
assumed that fragments are only either transmitted correctly or lost completely in the
case of an error-ridden data transmission. Bit errors within a fragment can therefore not
be corrected by this algorithm. From the specification [9], the following section explains
the algorithm with a small example.

3Sunday 6th of January 1980 at 00:00:00
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To encode a message, it is first divided into m fragments of length lf . Each frag-
ment represents a data bit, so the complete fragmented message is the data word
F = (f1; f2; :::; fm), consisting of all the data fragments. All operations that are nor-
mally performed on data bits are now applied to the fragments. When calculating parity
fragments, this means that the complete fragments are XOR calculated in each case.
This results in a new fragment of length lf . The parity matrix C still remains a binary
matrix and has the dimension m ∗ m. It is randomly generated, but does not have to
fulfill all properties of regular LDPC codes. Only the 2nd and 3rd properties must be
met. From this a parity check matrix P = (I|CT )T of the dimension m ∗ n is generated,
which is needed for the coding as well as the decoding.

Encoding: To encode a message of length ld with this algorithm, the fragment length
lf and the code rate R must first be defined. This calculates m and n to m = [ld/lf ] and
n = [m/R]. With this basis, the following steps can be performed to encode the data.
The data fragments created by splitting the message are converted into code fragments
using these steps. The code fragments are then transmitted to the receiver.

1. Create the parity check matrix P . Here the number of 1’s in C are determined by
the code rate and is calculated as m ∗ R.

2. Code each code fragment ci according to the following rule.
1 c_i = 0
2 for k=0 to m
3 i f P[ i ] [ k ]
4 c_i = c_i ^ f_k

3. From the code fragments generated, the complete codeword is thus obtained C =
(c1; c2; ::; cn). Here, for the first m code fragments: ci = fi.

4. The individual code fragments can now be sent one after the other. It should be
noted that often only a part of the correction fragments is required by the node.

Decoding: To be able to decode the received code fragments, the receiver must also
know lf , R and P . Furthermore, a decoder matrix D must be created. This matrix has
the dimension of m∗m and is initially a zero matrix. To recover the data fragments and
thus the original message, the following steps must be performed:

1. Create the parity check matrix P and the decoder matrix D.

2. Perform the following calculation for each code fragment ci. This is calculated
with the already existing fragments, in order to remove all redundant information,
which the receiver already knows. If the fragment still contains useful information,
it is stored.

1 for k=0 to m
2 i f P[ i ] [ k ] and D[ k ] != 0
3 c_i = c_i ^ f_k
4 P[ i ] = P[ i ] ^ D[ k ]
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5 i f P[ i ] != 0
6 j = f irst_non_nul l_index (P[ i ] )
7 D[ j ] = P[ i ]
8 f_j = c_i

3. As soon as D is a triangular matrix with a diagonal consisting only of ones, the
receiving can be aborted. Depending on the error rate of the channel, less than n
fragments are needed. If this condition is not met after the nth fragment is received,
more fragments have been lost than the algorithm can correct, and the process must
be terminated with an error. To be able to reconstruct the uncoded fragments the
receiver must receive at least m linearly independent coded fragments.

4. In the last step, the obtained fragments are recomputed to create from D a unit
matrix. This is achieved as follows.

1 for k=m−1 to 0
2 for l=k+1 to m
3 i f D[ k ] [ l ]
4 f_k = f_k ^ f_l
5 D[ k ] [ l ] = 0

5. After this calculation, D = I and all fragments have been recovered. The received
data word is thus F = (f1; f2; ::; fm).

Example: The algorithm is to be explained by means of a simple example. For this
purpose, the parameters are set as followed.

• d = ”CorsinObristMT 2022” = 436f7273696e204f6272697374204d5432303232

• ld = 20

• lf = 4

• R = 0.5

• m = 5

• n = 10

In the next step, the parity check matrix P must be created. For this purpose, the rows
[m + 1, n] are filled randomly, with two ones per row. For this example, the matrix was
generated from equation 4.1.
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P =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 1


(4.1)

This matrix can now be used to calculate the code fragments. Equation 4.2 shows the
results of the calculations after step 2 of the coding.

c0 = f0 = 436f7273
c1 = f1 = 696e204f

c2 = f2 = 62726973
c3 = f3 = 74204d54
c4 = f4 = 32303232
c5 = f0 ⊕ f2 = 211d1b00
c6 = f1 ⊕ f3 = 1d4e6d1b

c7 = f3 ⊕ f4 = 46107f66
c8 = f0 ⊕ f1 = 2a01523c

c9 = f2 ⊕ f4 = 50425b41

(4.2)

The code fragments created in this way are transmitted to the receiver in the next step.
In this example, a packet loss is simulated in that the fragments c1 and c3 do not arrive
at the receiver. The calculation after step 2 of the decoding is trivial for i < m, since
no calculations need to be performed after the first loop. The reason for this is that
for i < m P has a one only at the position Pii, i.e. exactly the position of the received
fragment, which means that Di = 0. After the reception of c0, c2 and c4 the status of
the receiver corresponds to equation 4.4.

D =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 (4.3)
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f ′
0 = c0 = 436f7273

f ′
0 = c0 = 00000000

f ′
2 = c3 = 62726973

f ′
0 = c0 = 00000000

f ′
4 = c4 = 32303232

(4.4)

Next, c5 is received. −→
P5 has a one at positions 0 and 2. When processed with step 2, −→

P5
is updated according to equation 4.5, resulting in a zero vector.Thus, the received code
fragment contains no new information and is discarded.

−→
P ′

5 = −→
P5 ⊕

−→
P0 ⊕

−→
P2

−→
P ′

5 =


1
0
1
0
0

 ⊕


1
0
0
0
0

 ⊕


0
0
1
0
0

 = −→0 (4.5)

The code fragment c6 is processed next. Here, the same calculations are performed.
Unlike c5, however, at this point a −→

P6 is produced that is not zero, since both −→
D1 and−→

D3 are zero vectors. −→
P6 is thus used unchanged as a new −→

D1, while c6 is stored as f ′
1.

−→
P6 =< 0, 1, 0, 1, 0 >

D =


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1



f ′
0 = c0 = 436f7273

f ′
1 = c6 = 1d4e6d1b

f ′
2 = c2 = 62726973

f ′
3 =00000000

f ′
4 = c4 = 32303232

(4.6)

The next code fragment is c7. This also contains useful information, since P73 = 1.
Using step 3, −→

P7 is xored with −→
D4, which removes the one at this point. Thus, the status

of the receiver after this operation is given by equation 4.7.
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−→
P7 =< 0, 0, 0, 1, 1 >

D =


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



f ′
0 = c0 = 436f7273

f ′
1 = c6 = 1d4e6d1b

f ′
2 = c2 = 62726973

f ′
3 = c7 ⊕ c4 = 74204d54

f ′
4 = c4 = 32303232

(4.7)

At this point, the transmission of further fragments can be terminated, since the pre-
requisite from step 3, the triangular matrix, has been created. With step 4, the rows of
the decoder matrix D are now offset against each other until a unit matrix is created.
For this example, this is only true for k = 1 and l = 3, resulting in f ′

1 = f ′
1 ⊕ f3 being

calculated. The result is the decoded result shown in equation 4.8.

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



f ′
0 = c0 = 436f7273 = f0

f ′
1 = c6 ⊕ c7 ⊕ c4 = 696e204f = f1

f ′
2 = c2 = 62726973 = f2

f ′
3 = c7 ⊕ c4 = 74204d54 = f3

f ′
4 = c4 = 32303232 = f4

(4.8)

Comparing the fragments calculated in this way with those that were originally en-
coded, we find that the message could be successfully recovered: F = f ′

0|f ′
1|f ′

2|f ′
3|f ′

4 =
436f7273696e204f6272697374204d5432303232 = ”CorsinObristMT 2022”.

30



CHAPTER 4. SCIENTIFIC RESEARCH

4.2.1.4. Summary FUOTA LoRaWAN

The theory and specifications for a firmware update over the air in a LoRaWAN network
are defined. Simulations [2] have shown that the protocol defined by the LoRa Alliance
work but detailed field tests have not been published yet. The protocol workflow shown
in figure 4.11 will be taken as the base for the implementation of this thesis.

Figure 4.11.: FUOTA protocol flow-diagram [2].
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4.2.2. Binary patch files

The authors in paper [10] are listing and comparing differencing algorithms. Following
section presents the key-findig of their work.
Differencing algorithms can be of two types, either block-level or byte-level, depending
on the granularity level they are able to detect matching segments. The block-level al-
gorithms split the firmware images into fixed-size blocks, aiming to detect non-common
segments between the two images, hence, their accuracy is highly affected by the block
size. On the other hand, the byte-level algorithms are able to find non-common seg-
ments between two firmware versions using blocks of variable lengths and can utilise
more fine-grained approaches in order to achieve better accuracy, for example dynamic
programming. Regarding algorithms’ performance, the block-level ones can detect alim-
ited number of non-common segments, since they are not able detect those with size
smaller than the size of a block. However, these algorithms typically have smaller time
and memory footprint. Byte-level algorithms, on the other hand, can detect more non-
common segments but typically require more time to complete. The following list and
table 4.4 summerizes the different algorithms presented in the work and their perfor-
mance.

• FBC:
Fixed block comparison splits the two images into blocks and then compares each
corresponding block. For each matching block pair, a COPY instruction is inserted
into the produced delta script, while the non-matching ones are transmitted along
with the delta script. In order to encode the latter blocks, an ADD instruction
needs to be inserted in the delta script. The main benefit of this technique is the
low time and space overhead, as well as the ease of implementation.

• Rsync:
Is initially developed for binary files exchange over low-bandwidth channels.This is
a block-level differencing algorithm that splits the firmware images into fixed-size
blocks, and then uses a sliding window with a size equal to the block size, to scan
the two firmware images for detecting matching segments. Like typical sliding
window protocols, when a match is found, the window moves forward one block,
otherwise it moves one byte, signing this block as unmatched. All unmatched
blocks are accumulated for transmission either when a next block is matched, or
the current window reaches the end of the new image.

• RMTD:
Reprogramming with minimal transferred data is a byte-level algorithm that aims
to find the optimal combination of common sequences between two images, in or-
der to minimize the number of transmitted bytes. RMTD uses a 2D matrix to
record the pairs of the common bytes found for the two firmware images, with the
comparisons performed in both forward and backward order to achieve higher ac-
curacy. The result of this operation consists of two lists that contain the matching
segments of the two images, as well as the matching segments between the partially
reconstructed new image and the rest of the new image, respectively. It must be
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noted that the algorithm’s complexity depends on the size of the images, which
makes it unsuitable for increasingly complex programs. Experiment have shown,
that RMTD crashes when the code size becomes too large (~42Kb), due to a lack
of memory.

• Hirschberg’s trick:
Is a method for computing the longest common sequences between two strings,
while saving space, utilizing a dynamic programming approach. Hirschberg also
presented a modified version of this algorithm, which follows a divide and conquer
approach and is able to compute the LCS of two strings in O(min(m, n)).

• R3diff:
Is a byte-level comparison algorithm that complies with the overall design of the
R3 OTAP scheme. Initially, the algorithm computes the hash values for every
three continuous bytes of the current image.

• DASA:
An efficient differencing algorithm based on suffix array is a differencing algorithm
that focuses on minimizing the space and time complexity for computing the opti-
mal delta script. In order to accomplish this, it utilizes an efficient data structure,
called suffix array.

• DG:
Is a differencing algorithm that is developed special for nodes that lack external
memory. The algorithm places the two images side-by-side and executes an XOR
operation between the corresponding bytes, aiming to reveal the sequences of the
non-matching bytes. In a other work a comparison of R3diff and DG was con-
ducted, using various image sizes and code shifts. The authors inferred that DG
outputs significantly smaller delta scripts than D3diff for small-sized images but
this does not stand true, as more data and code is shifted. Moreover, the authors
found that the number of ADD instructions in the delta script gets smaller, as code
shifts increase. The authors conclude that DG is not able to provide optimization
for a high number of small changes. Instead, it generates a number of ADD in-
structions that encode regions with a few bytes for each non-matching segment.
When the code shifts increase, these non-matching segments expand together and
are merged under one common ADD instruction. This results to a larger delta
script with fewer ADD instructions.
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Algorithm Type Time complexity Space complexity

FBC block-level O(n) O(n)
Rsync block-level O(n2) O(n)
RMTD byte-level O(n3) O(n2)
Hirschberg’s trick byte-level O(n2) O(n)
R3diff byte-level O(n3) O(n)
DASA byte-level O(nlogn) O(n)
DG byte-level O(n2) O(n)

Table 4.4.: Summary of differencing algorithms commonly used for OTAP schemes
n: the combined length of the two firmware images in bytes [10].

JojoDiff
In other work [34] the authors used the JojoDiff algorithm [1] which tries to find a min-
imal set of differences between two files using a heuristic algorithm with constant space
and linear time complexity. This means that accuracy is traded over speed. JDIFF will
therefore, in general, not always find the smallest set of differences, but will try to be
fast and will use a fixed amount of memory. This work provides a javascript interface
to build the patch file and a small C library to merge the patch file to the actual image.
In previous work this algorithm was already used to build patch files.

The authors in work [11] were presenting the BSDIFF and XDELTA algorithm. Further
they presented performance analysis for all algorithm which will be shown at the end of
this section.

BSDIFF
BSDiff is a differencing algorithm that focuses on executable files using suffix sorting
for the efficient computation of delta scripts. Initially, the two files are scanned both
forwards and backwards, so that segments of the new file that exactly match with others
of the current file are detected. Next, BSDiff computes approximate matches, expand-
ing the detected matching segments in both directions, so that every suffix/prefix of the
extension matches at least half of its bytes. These matches correspond to slightly modi-
fied segments of the new firmware that have small differences between the two versions.
The algorithm relies on common change patterns observed in executable code, so that
it produces smaller delta scripts for executable files, compared to other similar tools, in
O((n + m)logn) time complexity, where m and n are the sizes of the two file versions.
On the other hand, BSDiff is memory-intensive, requiring max(17 ∗ n, 9n ∗ m) + O(1)
bytes of memory for the patch computation.

XDELTA
XDELTA is a linear time and space differencing algorithm that operates at block-level
and produces delta scripts in VCDIFF format. The algorithm appends the two file ver-
sions constructing a new file, which is compressed using LZ77 or a similar compression
algorithm, producing a compression only for the part that consists of the new version.
As the two file versions share many common segments, the new version will be efficiently
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compressed. In this sense, data compression can be considered as a special case of dif-
ferencing, where no current file is provided. XDELTA produces small delta scripts by
optimizing the generated instruction set and merging small instructions into one.
In table 4.6 to 4.8 the performance of the algorithm is presented. The used application
files are explained in table 4.5.

Version
number

Description Codesize
(bytes)

V1 Base version 41608
V2 Two initialized variables are added, and their values are

printed using an additional printf call
41628

V3 A new function is implemented and called 41628
V4 An additional instruction is added in the implementation of

the new function
41628

V5 No modifications done (same as V4) 41628
V6 An additional printf call is added 41740
V7 Three new functions are implemented and called 41740

Table 4.5.: The different firmware versions used to feed the differencing algorithms [11].

Firmware
update

RMTD DG Dfinder
(i-p)

Dfinder
(o-o-p)

Rdiff R3 BSDiff Xdelta3 JojoDiff

V1, V2 3771 5910 8286 2392 41639 5465 1057 3568 3939
V2, V3 13 11 31 31 2065 16 160 63 15
V3, V4 5 2 26 26 9 5 140 53 –
V4, V5 5 2 26 26 9 5 140 53 –
V5, V6 3871 6026 8362 2479 41751 5569 1175 3719 4043
V6, V7 46 63 71 57 2065 54 209 92 60

Table 4.6.: The delta script size (in bytes) produced by the various differencing algo-
rithms when optimised code is used [11].

Firmware
update

RMTD Dfinder(i-
p)

Dfinder(o-
o-p)

Rdiff R3 BSDiff Xdelta3 JojoDiff

V1, V2 151.480 0.072 0.033 0.020 0.483 0.023 0.049 1.807
V2, V3 154.524 0.039 0.039 0.015 7.345 0.0162 0.050 1.167
V3, V4 153.790 0.052 0.037 0.014 8.800 0.015 0.011 –
V4, V5 161.040 0.042 0.039 0.016 10.412 0.018 0.008 –
V5, V6 133.800 0.045 0.022 0.019 0.292 0.023 0.029 1.532
V6, V7 104.939 0.021 0.023 0.011 4.358 0.011 0.033 0.779

Table 4.7.: Mean execution time (in seconds) of the various differencing algorithms for
the optimised code case [11].
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Firmware
update

RMTD Dfinder(i-
p)

Dfinder(o-
o-p)

Rdiff R3 BSDiff Xdelta3 JojoDiff

V1, V2 1695291 4071 4069 122 3834 7595 100845 7595
V2, V3 1695317 4065 4069 38 3829 7595 100845 7595
V3, V4 1695317 4065 4069 32 3829 7595 66925 –
V4, V5 1695317 4065 4069 32 3829 7595 66925 –
V5, V6 1704450 4079 4078 122 3843 7595 100845 7595
V6, V7 1704436 4076 4080 38 3840 7595 100845 7595

Table 4.8.: Peak memory utilisation (in Kbytes) during differencing algorithms’ execu-
tion for the optimised code case [11].

4.2.3. Bootloader

A Bootloader is the first piece of firmware that gets executed once the microcontroller is
turned-on/reset. The primary objective of the Bootloader is to initialize the system and
provide control to the application. The other objective of the Bootloader is to support
the data loading feature. The bootloader typically contains minimal operations such as
kernel release steps and cryptographic operations to read and verify the integrity of the
firmware stored and/or received via an upgrade process [3][35].

Figure 4.12.: Typical IoT device stack [35].

The authors [35] developed a proof of concept FreeRTOS bootloader for IoT devices
in context of OTA firmware update. These IoT devices will receive their update over
a wireless channel and the bootloader will then implement checksum operations, verify
the integrity and authenticity if possible, install it and then reboot.
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The authors present two levels where the OTA update module can be implemented.

• At the bootloader level:
The OTA and firmware verification process are executed at the bootloader stage
and is independent of the application. This choice allows a bootloader/ application
separation but increases the footprint of the first one (bootloader size).

• At the application level:
The implementation of the ota process at this level allows to decrease the boot-
loader footprint. The OTA process is dependent on the application, but indepen-
dent of the bootloader.

In the presented work the authors gave special interest to the OTA update at the applica-
tion level, to reduce the highest possible additional footprint impact on the constrained
device. In their own research the authors scanned a variety of papers regarding boot-
loader for IoT devices. The most interesting finding from this work was a bootloader for
a board using a Cortex-M0+ with 256kB Flash and 32kB of RAM. The solution there
uses different partitions, or areas, in the flash memory to run the firmware update. The
firmware is loaded into an update area which is used to run integrity and version checks
before copying the image into a live partition. Moreover, the last installed version is
copied to a backup area, and in case of failure, a rollback to this version is done. Fur-
ther the authors referred to a document by ATMEL [12] which discusses several design
considerations in developing this kind of software. The most important ones are:

• The bootloader sequence diagram for firmware upgrade, which includes firmware
integrity verification and code encryption

• The memory partitioning (i.e., single or dual banked memory), which makes it
possible to have at least one working version of the firmware in the device at
anytime, to avoid firmware corruption in case of issues such as power or connection
loss.

• Safety solutions to prevent safety related errors(i.e., transmission error, transmis-
sion failure, information loss).

• Security solution, by enforcing the privacy, integrity and authenticity features, via
hash functions, digital signatures, message authentication codes (MACs) and en-
cryption in order to prevent attacks(i.e., unauthorized device, third party firmware,
firmware alteration, reverse-engineering).

Another work [37] was focusing on two different possible memory allocations regarding
a OTA update on an IoT node.

• Single-bank – firmware is rewritten right in its destination location, making it
unavailable during an update

• Dual-bank – firmware is reconstructed in another part of the memory (second bank)
and later copied into its destination location. If the procedure fails mid-update,
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old firmware is still available.

The paper provides experiments show that single-bank updates can significantly decrease
memory requirements for an update. The main advantage of single update approach is
less memory required. The main disadvantage is the possibility to cause non-recoverable
firmware corruption in case of a mid-update error. The implementation of single-bank
updates also requires more logic. The-main advantage of dual-bank updates is that a
working copy of firmware is always present on a device. It is also simpler to implement.
The main disadvantage is that more memory is required. The developers must consider
their options and choose which approach to use. The ideal scenario is to implement both
options and make the solution configurable.

For this thesis, with the knowledge gained in previous work [53] a solution compared
to a single-bank firmware update bootloader with the use of an external flash will be
implemented. The use of a FreeRTOS with a file system running will also simplify the
implementation and firmware architecture but will increase the memory footprint of the
bootloader. But having an external flash will give us the opportunity to plan more
internal flash for the bootloader.
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5. Hardware Design

As explained in chapter 3.6, the three main blocks FW Update Server, LoRaWAN Net-
work Server & Gateway and the LoRaWAN node will build the infrastructure for the
project. All of these blocks include software stacks as well as hardware. The following
chapter will show which hardware setup was developed and installed.

5.1. LoRaWAN node

For the LoRaWAN node, which should simulate a sensor node in the field, the LPC55S16-
EVK (figure 5.1) is used. The evaluation kit (EVK) is a development board, which
already has a variety of peripheries on it. This helps during prototyping and to test and
further implement different functionalities of the LPC55S16 microcontroller. Table 5.1
lists the basic features of the EVK.

Figure 5.1.: LPC55S16-EVK board by NXP [50].

The EVK by itself has no on-board hardware functionality for LPWAN communica-
tion. This means there is no LPWAN modulation chip and antenna connector already
placed. To enable LoRa functionality to this EVK board, the LPCXpresso expansion
could be used. Due to the fact, that the LPCXpresso expansion is Arduino UNO pin
header compatible, there are suitable LoRa shields available. One of these shields is the
SX126xMB2xAS (figure 5.2) shield from SEMTECH. In previous projects this shield
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was already with EVK board to simulate a basic node.
For this project, the idea was to create a demonstrator, which can receive firmware up-
date over the air in a LoRaWAN network. To give the EVK board some demonstrator
characteristic and to be able to handle large amount of firmware data, an own shield
was developed.

Processors LPC55S16 Arm® Cortex®-M33 PSA Level 2 certified mi-
crocontroller running at up to 150 MHz
256 KB flash and 96 KB SRAM on-chip
HLQFP100 package

Debug Capabilities LPC-Link2 debugs high-speed USB probe with VCOM port
I2C and SPI USB bridging to the LPC device via LPC-Link2
probe
SWO trace support (MCUXpresso IDE)
Debug connector to allow debug of target microcontroller
using an external probe

Expansion Connec-
tors

MikroElektronika Click expansion option

LPCXpresso expansion connectors compatible with Arduino
UNO
PMod compatible expansion / host connector

User Interface Reset, ISP, wake and user buttons for easy testing of soft-
ware functionality
Tri-color LED

Connectivity Full-speed USB device / host port
High-speed USB device / host port
UART header for external serial to USB cable
CAN Transceiver

Table 5.1.: LPC55S16-EVK features[].
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Figure 5.2.: SX126xMB2xAS by SEMTECH [48].

5.1.1. Demonstrator shield

In following section the development process of the demonstrator shield is explained.

5.1.1.1. Demonstrator requirements

In the following section, the requirements for the demonstrator are listed. The require-
ments were defined on the knowledge gained in previous work and through the scientific
research in chapter 4.

• External memory
The internal memory of the LPC55s16 microcontroller is limited to 256kB flash.
The last 10kB of this flash are reserved for internal function. This means there
are 246kB of internal flash to use for applications. This internal flash has to host
a bootloader application and a LoRa application which integrate the LoRaWAN
stack and has to provide functionality of firmware updates over the air. For the
basic bootloader tested in previous work, which flashed the received application
to the running section (concept of dual-bank flash memory), a memory footprint
of 20kB had to be reserved. For the LoRaMac-node software stack, Semtech
recommends at least 128kB of flash [61]. A fully size-optimized basic LoRaWAN
example with the LoRaMac-node stack uses already more than 64kB of flash. Not
only the LoRa functionality has to be provided, the demonstrator also needs to have
sensor/actor integrations and will use a RTOS for a powerful software architecture.
The demonstrator always need a running backup image ready for safety reasons.
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The update image has to be cached. This update image could in the worst case
have a memory footprint of a complete application. That means the flash has to
provide at least the recommended 128kB flash on top of the bootloader, running
image and backup image. Figure 5.3 summs this memory footprints calculation
up. It can be seen that, even if the cached update image is directly in the running
application via the bootloader, the total memory footprint would exceed the 246kB
of internal flash. Regarding this memory footprint calculation it is recommended,
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Figure 5.3.: Internal flash problem.

to use an external memory. An external memory would allow the bootloader to
integrate a simpler image handling and the running application does not have to
be designed as low memory usage as possible and could therefore provide more
functionalities and options. For the external memory the following criteria apply:

– Memory > 256kB

– Divisible in sections

– SPI interface

– Driver in C available
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With an external memory the memory footprint could be organized as shown in
figure 5.4.
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Figure 5.4.: Possible memory setup

• External RTC
As described in chapter 4.2.1, the firmware update over the air protocol needs a
time synchronization between the server and the node. To have an actual and
accurate time on the node, a RTC chip is needed. This chip needs to be powered
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by an own battery. This guaranties that, even if the node loses power, the time
would not be lost.

• Sensors/Actors
For demonstration purposes, the node should have sensors and actors on it. For
sensors basic temperature and humidity data should be provided. As actors, a
display should show the firmware update process. Further the node should have
buttons so the user can interact with the demonstrator node.

• LoRa
To provide LoRa functionality to the Node a LoRa chip has to be integrated.
This LoRa chip has to be supported from the LoRaMac-node sotware stack from
Semtech. Following chips are supported:

– SX1261

– SX1262

– SX1272

– SX1276

• SE
SE stands for SecureElement. These elements provide a secure key storage for IoT
devices. A SE chip shoul be optionally taken into account.

Figure 5.5 shows an overview of the different hardware components the demon-
strator node should provide.

Demonstrator node

LORA Chip

Sensors Flash

SE

RTC Antenna

CCCC

DisplayDisplay

uC LPC55S16uC LPC55S16

Figure 5.5.: Demonstrator node hardware blocks.
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5.1.1.2. Demonstrator components selection

External memory:
At the university, different projects with external memory chips took place. The most
common used external on-board memory chips for logging and data cache purposes,
is the SPI NOR-Flash chip from Winbond. Winbond has a variety of SPI chips with
different memory capacities. The W25 NOR-Flash array is organized into programmable
pages of 256-bytes. These pages can be erased in groups of 16 (4kB sector erase), groups
of 128 (32kB block erase), groups of 256 (64kB block erase) or the entire chip (chip
erase). The small 4kB erase sectors allow greater flexibility in applications that require
data and parameter storage, which fits the use-case of the FUOTA application. Further,
this NOR-flash guaranties at least 100’000 Program-Erase cycles and a data retention
of more than 20years. With a max of 1uA power consumption in low-power mode it fits
also requirements for low-power battery driven IoT nodes.
For the demonstrator node a W25Q128 chip will be used. This will provide 16MByte
of memory. The reason to choose the Q128 variant is, that the university and common
distributors have this chip in stock. Table 5.2 sums up the specification of the NOR-
Flash.

interface 133MHz SPI
max transfer rate 66MB/S continuous data transfer rate
write/erase cycles 100’000
data retention >20years
capacity 16MByte
page size 256byte
sector sizes 4, 16, 32 and 64kByte
low-power current 1uA

Table 5.2.: W25Q128 features [74].

External RTC:
Like the external memory, the university often works with RTC chips for time manage-
ment on devices. Regarding the chip market crisis RTC chips are rare components and
there are long waiting times for the distributors. The university itself has the RTC chip
DS3232 in stock. The DS3232 is a low-cost, extremely accurate, I2C real-time clock.
The RTC maintains seconds, minute, hour, day, date, month, and year information.
There are already generic implemented I2C libraries in C which have to be ported to
the LPC55S16. Table 5.3 lists the specification of the DS3232 RTC.

timekeeping Accuracy ±5ppm (±0.432 Second/Day)
interface 400kHz I2C
features Battery Backup

Two Time-of-Day Alarms
1Hz and 32.768kHz Output

Table 5.3.: DS3232 features [47].
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Sensors/Actors:
For the sensors the SH31 temperature and humidity sensor from Sensirion will be used.
This sensor is commonly used in the industry and often integrated in IoT devices. The
sensor provides following features5.4.

interface I2C
average supply current 1.7 uA

relative humidity accuracy 2%RH
relative humidity range 0 - 100%RH
response time 8s

relative humidity accuracy 0.3 °C
relative humidity range -40 - 125 °C
response time 2s

Table 5.4.: SHT31 features [63].

For the actors and interaction with the user a display, LEDs and some buttons have to
be integrated. For the display, a small size I2C display is used. As like for the other
components, the SSD1306 OLED display is often used for prototyping purposes and the
university has it in stock. Figure 5.6 shows the SSD1306 OLED display. The 128*64
pixel display provides a I2C interface and each pixel can be manually triggered. As
further interaction options, some basic LEDs and PUSH-buttons will be placed on the
demonstrator node.

Figure 5.6.: SSD1306 128x64 OLED display [49].
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LoRa:
For the LoRa functionality a LoRa module was needed. This means, it is not planned
to build the LoRa radio electrical circuit for the common LoRa IC (SX126x, SX1272),
but to use a LoRa module which has the electrical circuit already on the module.
A market check showed, that there are plenty of LoRa module available but most of
them already have a microcontroller integrated. These microcontrollers have to be used
to build the LoRa application or they build an interface, such that you can communicate
with AT commands with the LoRa module. For the demonstrator node, which will be
a shield on top of the LPC55S16 EVK, these mentioned modules are not suitable.
One module which fits these requirements and has a small form factor is the RFM96
module from HOPERF with a SX1276 Semtech LoRa IC on it. Following figure 5.7
shows the module.

Figure 5.7.: RFM96 LoRa module [31].
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5.1.1.3. Demonstrator node hardware development

External memory:
The schematic for the external memory can be seen in figure 5.9. The main part is
the IC U3 which is the W25WQ memory component. During research about the flash
component W25Q, a second interesting flash component was mentioned. The W77Q
NOR-Flash is a pin-compatible to the W25Q, which means it has the same footprint
and pin mapping. The W77Q is a secure flash chip. It provides as add on to the same
basic functionality of the W25Q, a secure mechanism, which allows to generate a secure
channel from the microcontroller to the flash or even from the remote user (server) to
the flash (figure 5.8). To have the possibility to use either one of these two flash chips,
a levelshifter and 1.8V power supply for the W77QW had to be developed. The reason
for this is that the W25Q chip with logical levels from 0-1.8V is not in stock, and the
W77Q is designed for these logical levels. The IC5, ADP150 chip, provides a stable
1.8V power supply with low noise and a maximal current output of 150mA. The IC4,
NTB0104, is a specially designed level shifter for the SPI communication bus. With
the jumper JP6 to JP9 it can be chosen, if either the SPI communication is directly
mapped to the flash chip (W25Q variant) or if it will be level shifted from 3.3V to 1.8V
(W77Q variant). With jumper JP5, the 1.8 power supply can be enabled or disabled.
This was developed, if the power of 1.8V is not needed, it can be disabled, so there are
no additional leak currents from the IC5 and IC4.

Figure 5.8.: W77Q use case [75].
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Figure 5.9.: Schematic of W25Q flash.
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External RTC:
For the external RTC the electrical schematic is shown in figure 5.10. The RTC connec-
tion provides a basic use. The 32kHz output is not used. To the VBat pin a 3V chip
battery will be connected. This Vbat pin will also be mapped to an analog input of the
microcontroller. This allows to check the capacity of the RTC battery.

Figure 5.10.: Schematic of RTC DS3232.

Sensors/Actors:
The SHT31 (figure 5.11) is connected to provide the basic functionality. The ADDR pin
is connected to ground, which sets the I2C address of the SHT31 to 0x44.
The SSD1306 OLED display will be connected to the same I2C bus. The display will
be connected over basic 4pin header connectors. For the buttons BT1 and BT2 (figure
5.12) additional LEDs were placed, which give a light feedback to the user if the button
is pushed. LED D1 shows if the shield is well powered and the LED D5 can be software
triggered.

Figure 5.11.: Schematic of SHT31 sensor.
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Figure 5.12.: Schematic buttons, LEDs and Diplay connector.

LoRa:
The schematic of the RFM96 LoRa module can be found in figure 5.13. All digital
output pins (DIO0-DIO5) are mapped to GPIOs of the microcontroller. An additional
button SW1 allows the user to reset the module manually. The jumper JP2 is placed to
enable/disable the module and to measure the power usage of the module.

Figure 5.13.: Schematic of RFM96 LoRa module.
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5.1.1.4. Layout

Figure 5.14 shows the rendered PCB.

Figure 5.14.: Demonstrator shield rendered

In figure 5.15 the PCB is graphically divided in the main functionalities. Table 5.5 lists
what functionalities these parts represent. For the PCB stack a two layer variant is
chosen, where the top chopper layer is connected to ground and the bottom chopper
layer is connected to 3.3V. The components are placed in such a way, that the LoRa
module is not in the region where the user interacts with the shield and next to the
boarder to guarantee a minimal trace to the antenna connector.
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1 (orange) This part represents the flash function, which maps to the
schematic from figure 5.9. On the right side and on top are all
jumpers and in the center is the flash IC.

2 (red) Red represents the RFM96 LoRa functionality (schematic figure
5.13). The RFM96 modem us green colored and on top the SMA
antenna connector is placed.

3 (green) Green with the number 3, the buttons, LEDs and diplay connector
are marked.

4 (blue) The blue box shows the SHT31 sensor placement. The SHT31
sensor needs cutouts around the PCB. This is needed so there is
enough ambient air around the IC and that the copper surfaces of
the PCB do not affect the temperature measurement.

5 (purple) On the backside in blue, the RTC circuit with the battery connec-
tor is placed.

Table 5.5.: PCB parts

12

3

4

5
Figure 5.15.: Demonstrator shield divided in main parts.
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5.2. LNS & Gateway hardware

In previous work[53], a gateway provided by Prof. Erich Styger was used. The gateway
a is modular hardware stack containing an RAK831 WisLink LPWAN HAT together
with a GPS HAT. Both modules can be placed on top of a Raspberry Pi, which runs
the gateway driver. Figure 5.16 shows the two hardware modules next to each other.
Figure 5.17 shows the complete hardware stack including a Raspberry Pi 3b+. To have
a Raspberry Pi included in this gateway hardware stack provides the flexibility to run
other services next to the gateway driver on the same hardware. The experience gained
in previous work with this hardware stack lead to the decision to use it for this master
thesis project.

Figure 5.16.: RAK831 with GPS module [68].

Figure 5.17.: RAK831 Stack by TTN [69].

There are a few open-source and non-open-source LoRaWAN network servers from dif-
ferent providers (table 5.6). These providers combine the application and network server
in one software package. The ChirpStack and TTS network server fulfill all the features
necessary for this project. In previous work both server were used with basic functional-
ity. The hardware requirements of these servers for a private network are minimal. It is
recommended to use a Unix based OS which is able to run Docker container on it. For
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the Hardware a Lenovo Thinkpad notebook with an Ubuntu 20.04LTS OS installed will
be used. First a solution with The Things Stack was set up, but this solution caused
problems regarding TLS certificates between the gateway and the LNS as well as the
CLI host interface and the LNS.
These problems lead to switch to the ChirpStack implementation. In chapter ?? this
setup is explained.

Provider OpenSource Private-
Network
possibility

Community FUOTA
ready

Cost free

Loriot x -
Acklio x x
ChirpStack x x x x x
The Things
Stack

x x x x x

Table 5.6.: LNS provider.

5.3. FUOTA server

The FUOTA server will be a software service, which can be run on the same hardware
as the LNS server. The hardware should be able to run Python an JavaScript scripts.
For the FUOTA server the same host as for the LNS will be used.

55



CHAPTER 6. SOFTWARE DESIGN

6. Software Design

The following chapter explains the different software and firmware components used and
how they are implemented on both the server side as well as the demonstrator node.
First, the process flow of the firmware update over the air on a high level of abstraction
will be presented, then a deeper insight on components level will be made.

6.1. FUOTA server

In figure 6.1 the block graphic gives an overview how the FUOTA process flow is orga-
nized.

new firmware binary

old firmware binary

Delta patch generator

new FW version meta info

FUOTA server LNS & Gateway

Node LoRaWAN stackdata to ext. MemoryBootloader

Figure 6.1.: FUOTA process overview.

• Delta patch generator:
First the new firmware has to be build with the same compiler optimization level
as the old firmware version. The Delta patch generator will then build the delta
from the new version with the old version and generate a patch binary as a output.

• FUOTA server:
The FUOTA server has the task, to generate meta file information for the update
process and then start the process with setting up the time synchronization, mul-
ticast and fragmented data block transfer protocol. After the setup the FUOTA
server will send the patch file divided in fragments via the LNS&Gateway to the
demonstrator node.

• LNS & Gateway:
The LNS (LoRaWAN network server) is responsible to handle the LoRaWAN pro-
tocol and it’s MAC commands. Together with the gateway it builds the minimum
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setup to establish a LoRa communication between the LoRaWAN network and the
nodes in the field. The gateway acts as a package broker. This means it converts
the messages received by the LNS to a LoRa modulated signal and vice versa.

• Node LoRaWAN stack:
The LoRaWAN stack on the node is responsible to control the LoRa transceiver.
This includes the communication with the transceiver via SPI and the interpreting
of the LoRaWAN communication messages. It also handles the clock synchroniza-
tion, multicast and fragmented data block transport protocol.

• Data to external Memory:
Here the node will save the received meta info and fragmented data into the ex-
ternal memory.

• Bootloader:
Depending on the metadata stored in the external memory, the bootloader is re-
sponsible to merge a new received patch file with the actual image (stored in the
external memory) and boot the new generated firmware image. Further the boot-
loader should handle failed boot process and should be able to boot a backup image
or the last run application if something went wrong with the merge process.
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6.1.1. Delta patch generator

For the patch file, a JavaScript library [34] will be used. There, the JojoDiff [1] dif-
ferencing algorithm was ported to an executable script to create a patch file from two
binary images. This library was used, because there is a memory efficient C library
available, which allows the node to rebuild a firmware binary from a patch file created
with the JojoDiff algorithm. As an example two different firmware versions were build
on the base of a hello_wolrd example project from the MCUXpresso IDE (table 6.1).
Table 6.2 shows the size of the patch file generated from these two firmware versions. It
shows that the BSDiff algorithm could build a smaller patch file, but because the BSDiff
algorithem has a bigger memory footprint, it is not possible to use it on the LPC55S16
demostrator node.

Version
number

Description Codesize
(bytes)

V1 Base version, prints uart input as a echo to the uart
output (basic hello_world example)

9180

V2 adds an GPIO driver to toggle a LED every time, an
input on the uart interface arrives

9320

Table 6.1.: Different firmware versions for testing purposes.

Compared
versions

Description Codesize
(bytes)

V1 -> V2 JojoDiff algorithm 1501
V1 -> V2 BSDiff algorithm 657

Table 6.2.: Example JojoDiff patch file.
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6.1.2. FUOTA server process overview

The FUOTA server uses a MQTT interface as a communication protocol between the
LNS and the FUOTA server. As a base the FUOTA server uses the implementation by
Ahmed Elsalahy [23].
The FUOTA server was adapted to the developed FUOTA protocol which is shown in
figure 6.5 and explained in following section. The protocol is split into seven parts (figure
6.2).

1

2

3

4

5

6

7

FUOTA metadata information

Clock synchronization

Multicast session setup

Fragmentatioin session setup

Multicast class C request

Firmware multicast fragments

FW failed/complete message

Figure 6.2.: FUOTA protocol main parts.

In code listing 6.1 and 6.2, the JavaScript implementation for the server MQTT config-
uration and device configuration are shown. At code listing 6.2, the user has to write
all the device EUIs, which represent the devices that should receive a firmware update,
in the constant array devices.

1 //−−−−−−−−−−− S t a r t o f c o n f i g area −−−−−−−−−−−−−−−−//
2 // MQTT TheThingsStack con f i g , see h t t p s ://www. t h e t h i n g s i n d u s t r i e s . com/ docs

/ i n t e g r a t i o n s / mqtt /
3 // MQTT C h i r p s t a c l c o n f i g , see h t t p s ://www. c h i r p s t a c k . io / a p p l i c a t i o n −s e r v e r /

i n t e g r a t i o n s /mqtt /
4 //###### MQTT connect ion c o n f i g ######//
5 var HOST = ’192.168.1.112 ’ ;
6 var APP_ID = "" ; // ’ fuota −app ’ ;
7 var API_KEY = "" ; // API key from the App l i ca t i on s e r v e r
8 var PORT = 1883 ; // 1883 or 8883 f o r TLS
9 var opt ions = {

10 host : HOST,
11 username : APP_ID,
12 password : API_KEY,
13 port : PORT,
14 re j e c tUnauthor i z ed : false ,
15 p r o t o c o l : ’mqtt’ // mqtts f o r TLS
16 }

Listing 6.1: FUOTA server configuration.
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1 // Device IDs and EUIs c o n f i g
2 var GATEWAY_ID= ’mt-gateway ’ ;
3
4 //###### Mul t i ca s t group d e t a i l s c o n f i g ######//
5 var MULTICAST_APP_ID= ’fuota -app’ ;
6 var MULTICAST_DEV_ID= ’multicast -dev’ ;
7
8 //###### Al l d e v i c e s which r e c e i v e FUOTA ######//
9 // dev i c e EUIs c o n f i g wi th no spaces , Example : ‘FA23A01E61AE4F65 ‘

10 const d e v i c e s = [
11 ’1111111111111111 ’
12 ] ;
13 //−−−−−−−−−−− End o f c o n f i g area −−−−−−−−−−−−−−−−//

Listing 6.2: FUOTA EUI and IDs definition.

In the code listing 6.2, only one device is added EUI (0x11 0x11 0x11 0x11 0x11 0x11
0x11 0x11), which should receive a firmware update.

6.1.3. FUOTA metadata information

As a first step, the FUOTA server generates metadata, which are necessary for the node
for a successful firmware update over the air. Following table 6.3 lists the metadata that
have to be calculated by the server.

data description size
(bytes)

example data

size of the patch file 4 1501
new firmware version 4 0x01020304
# of patch files 4 1
size of a fragments 4 50
# of fragments per patch (this in-
cludes redundancy fragments)

4 48

HASH of patch file 32 0x7ca12506e88cf8b814e20848b229460f
91fc0370c44a7c4fee786960ce30c36d

HASH of new firmware 32 0x3b2730fa78b1bf326d33c0739908354c
9f03ff724627c1c448dfe9f91d4f8f29

Table 6.3.: Metadata explanation.

In code listing 6.4, the calculation of this metadata in the server are shown. To calculate
this data, the user have to pass the file path of the fragmentation file, patch file and
new firmware file at the start of the FUOTA service. Additionally, the user has to pass
a string with the new firmware version. Code listing 6.3 shows how these arguments are
passed while executing the FUOTA server.
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1 // node . j s ins tance , s e r v e r s c r i p t , fragmented data f i l e , patch binaray ,
new firmware binary , f irmware ve r s i on

2 node s e r v e r . j s fragmented_patch . txt patch . bin newFirmware . bin 01020304

Listing 6.3: Server execution arguments

1 //###### S c r i p t arguments ######//
2 const c l i e n t = mqtt . connect ( opt ions ) ;
3 const PACKET_FILE = proce s s . argv [ 2 ] ; // path to fragment f i l e "

f ragmets . t x t "
4 const PATCH_BIN_FILE = proce s s . argv [ 3 ] ; // path to patch f i l e " patch . b in

"
5 const NEW_IMG_BIN_FILE = proce s s . argv [ 4 ] ; // path to new firmware f i l e "

new_FW. bin "
6 const FW_VERSION = proce s s . argv [ 5 ] ; //new firmware ve r s i on number

"01020304" (0 x01 , 0x02 , 0x03 , 0x04 ) −−> Version 1 . 2 . 3 . 4
7
8
9 //###### Metadate in format ion c r e a t i o n ######//

10 // read ing b inary f i l e s
11 const f i l eBuf f e rPatchBIN = f s . readFi l eSync (PATCH_BIN_FILE) ;
12 const f i leBufferNewBIN = f s . readFi l eSync (NEW_IMG_BIN_FILE) ;
13 // patch hash c a l c u l a t i o n
14 // patch s i z e c a l c u l a t i o n
15 const patch_SHA = crypto . createHash ( ’sha256’ ) ;
16 const patch_SHA_HEX = patch_SHA . update ( f i l eBuf f e rPatchBIN ) . d i g e s t ( ’hex’ ) ;
17 const patch_State = f s . s tatSync (PATCH_BIN_FILE) ;
18 const patch_Size = patch_State . s i z e ;
19 // new firmware hash c a l c u l a t i o n
20 const newIMG_SHA = crypto . createHash ( ’sha256’ ) ;
21 const newIMG_SHA_HEX = newIMG_SHA. update ( f i leBufferNewBIN ) . d i g e s t ( ’hex’ ) ;
22 // #fragments and fragments s i z e c a l c u l a t i o n
23 let packets = parsePackets ( ) ;
24 const frag_CNT = packets . length −1;
25 const f rag_Size = packets [ 1 ] . length −3;
26 //###### Metadate conver t ing to Buf fer f o r c o r r e c t use ######//
27 var patch_SHA_buffer = patch_SHA_HEX. match(/[0 −9a−z ]{2}/ g i ) ; // s p l i t s the

s t r i n g i n t o segments o f two i n c l u d i n g a remainder => {1 ,2}
28 var patch_SHA_buffer_res = patch_SHA_buffer . map( t => par s e In t ( t , 16) ) ;
29
30 var newBin_SHA_buffer = newIMG_SHA_HEX. match(/[0 −9a−z ]{2}/ g i ) ; // s p l i t s

the s t r i n g i n t o segments o f two i n c l u d i n g a remainder => {1 ,2}
31 var newBin_SHA_buffer_res = newBin_SHA_buffer . map( t => par s e In t ( t , 16) ) ;
32
33 var FWversion_SHA_buffer = FW_VERSION. match(/[0 −9a−z ]{2}/ g i ) ; // s p l i t s

the s t r i n g i n t o segments o f two i n c l u d i n g a remainder => {1 ,2}
34 var FWversion_SHA_buffer_res = FWversion_SHA_buffer . map( t => par s e In t ( t ,

16) ) ;
35
36 var patchSize_buf = getBufferFromInt ( patch_Size , 3 ) ;
37 patchSize_buf = Buffer . from( patchSize_buf ) ;

Listing 6.4: FUOTA metadata calculation
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This metadata will be sent as two unicast messages to each node, over the LoRaWAN
Port 144 and 145. These ports (ports 1-199 are free to use) were randomly chosen and
have no further importance. The two messages sent are show in figure 6.3 and will be
sent before the general FUOTA protocol will be set up.

LoRaWAN Port 144

LoRaWAN Port 145

patc
hSiz

e

fwV
ersio

n
#patc

hes
frag

Size

#frag
ments

48Bytes

32Bytes

newFirmware HASH

patch HASH

Figure 6.3.: Metadata unicast messages.

6.1.4. Clock synchronization

As soon as the metadata information is received by the node, the node is requesting for
a time synchronization from the server. This request messages include the actual device
time. The DeviceT ime is the current end-device clock and is expressed as the time in
seconds since 00:00:00, Sunday 6th of January 1980 (start of the GPS epoch) modulo
232 [42]. The FUOTA server then has to calculate the time difference between the node
and itself. This can be seen in code listing 6.5.

1 . . .
2 . . .
3 . . .
4 let deviceTime = body [ 1 ] + ( body [ 2 ] << 8) + ( body [ 3 ] << 16) + ( body [ 4 ]

<< 24) ;
5 let serverTime = gpsTime . toGPSMS( Date . now ( ) ) / 1000 | 0 ;
6
7 let ad jus t = serverTime − deviceTime | 0 ;
8 let re sp = [ 1 , ad jus t & 0 x f f , ( ad jus t >> 8) & 0 x f f , ( ad jus t >> 16) & 0

x f f , ( ad jus t >> 24) & 0 x f f , 0b0000 /∗ tokenAns ∗/ ] ;
9 let responseMessage = {

10 "downlinks" : [ {
11 "priority" : "NORMAL" ,
12 "f_port" : 202 ,
13 "frm_payload" : Buffer . from( re sp ) . toString ( ’base64’ )
14 } ]
15 } ;

Listing 6.5: Clock sync server answer
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6.1.5. Multicast session setup

For the multicast session setup, the server has to send a message with the data listed in
table 6.4.

McGroupIDHeader McAddr McKey_encrypted minMcFCount maxMcFCount

size
(bytes)

1 4 16 4 4

Table 6.4.: McGroupSetupReq [8].

• McGroupIDHeader
This value gives an ID for the multicast group the device joins.

• McAddr
The multicast address is the address of the virtual device in the LNS. Over this
multicast device all the multicast messages will be sent. From this device address
and the McKey_encrypted, the relevant session keys will be derived.

• McKey_encrypted
The McKey_encrypted is the encrypted multicast group key from which McAppSKey
and McNetSKey will be derived. With the McKey_encrypted and the McKEKey
the McKey will be derived. This McKey will then be used with the McAddr to
derive the mentioned McAppSKey and McNetSKey.
The McKEKey is a lifetime end-device specific key used to encrypt a multicast key
transported over the air (Key Encryption Key). For the LoRaMac-node software
stack version 1.1, which runs on the demonstrator node, this key will be generated
as followed:

McRootKey = aes128_encrypt(AppKey, 0x20|pad16)
McKEKey = aes128_encrypt(McRootKey, 0x00|pad16)

The mentioned AppKey is the device unique key, that the node needs to communi-
cate in the LoRaWAN network in a normal unicast way. The key management for
the multicast sessions are complicated. With the help of Miguel Luis, a SEMTECH
application engineer, who developed a python script [46] to generate the different
multicast key, the correct McKey_encrypted key can be derived for all the nodes
in the field. The script can be found in the attachment A.2. An example output
of the script can be seen in code listening 6.6.
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1 LoRaWAN 1 . 1 . 0
2 AppKey : 000102030405060708090A0B0C0D0E0F
3 McAddr : 0x01FFFFFF
4 McRootKey : 430BFF9B049F19279455BD564133C73B ∗∗
5 McKeKey : 0FC43A2A45FDB753DD065270B50AB9F2 ∗∗
6 McKey : 0102030405060708090A0B0C0D0E0F10
7 McKeyEncrypted : 67608274FDD6C3937DA6C58030273C60 ∗∗
8 McAppSKey : C3F6C39B6B6496C29629F7E7E9B0CD29
9 McNwkSKey : BB75C362588F5D65FCC61C080B76DBA3

Listing 6.6: Example multicast keys.

Further, figure 6.4 gives a schematic view of the key derivation process.

Figure 6.4.: Multicast key derivation process [8].

• minMcFCount
The minMcFCount field is the next frame counter value of the multicast downlink
to be sent by the server for this group. This information is required in case an end-
device is added to a group that already exists. The end-device MUST reject any
downlink multicast frame using this group multicast address if the frame counter
is < minMcFCount.
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• maxMcFCount
Specifies the lifetime of this multicast group expressed as a maximum number of
frames. The end-device will only accept a multicast downlink frame if the 32bits
frame counter value minMcFCount ⩽ McFCount < maxMcFCount.

In code listing 6.7 an example of the downlink message from the server to the node
for the multicast session request is shown. The McKey_encrypted is hardcoded in
this variant. This is only possible if all nodes have the same API_Key, which is
not secure, but appropriate for testing the system it is simpler.

1 conso l e . l og ( ’sendMcGroupSetup\r\n\r\n’ ) ;
2 // mcgroupsetup
3 let mcGroupSetup = {
4 "downlinks" : [ {
5 "priority" : "NORMAL" ,
6 "f_port" : 200 ,
7 "frm_payload" : Buffer . from ( [ 0x02 , 0x00 ,
8 0xFF , 0xFF , 0xFF , 0x01 , // McAddr
9 0x58 , 0x2D , 0x3B , 0x83 , 0xEA, 0xD5 , 0x18 , 0x70 , 0x72 , 0x19

, 0x83 , 0x2B , 0x39 , 0x09 , 0x3D , 0xE9 , //
McKey_encrypted

10 0x0 , 0x0 , 0x0 , 0x0 , // minFCnt
11 0 x f f , 0 x f f , 0x0 , 0x0 // maxFCnt
12 ] ) . toString ( ’base64’ )
13 } ]
14 } ;

Listing 6.7: Example multicast session request message.
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6.1.6. Fragmentation session setup

For the fragmentation session setup, the server has to send a FragSessionSetupReq mes-
sage with the data listed in table 6.5.

FragSession NbFrag FragSize Control Padding Descriptor

size
(bytes)

1 2 1 1 1 4

Table 6.5.: FragSessionSetupReq [9].

• FragSession
The FragSession byte sets which fragmentation session will be used (there are 4
simultaneously possible fragmentation sessions). It also decides from which multi-
cast session the set fragmentation session is able to receive fragments.

• NbFrag
NbFrag specifies the total number of fragments of the patch file or generally of the
data block to be transported during the multicast fragmentation session.

• FragSize
FragSize defines the size in byte of each fragment.

• Control
With the control byte the used fragmentation algorithm can be chosen and a device
specific delay time can be set, helps to avoid that all devices answering at the same
time to the server.

• Padding
The binary data block size may not be a multiple of the FragSize. Therefore,
some padding bytes must be added to fill the last fragment. This field encodes the
number of padding byte used.

• Descriptor
The descriptor field is a freely allocated 4 bytes field describing the file that is
going to be transported through the fragmentation session. This can be defined
by the user.

1 conso l e . l og ( ’sendFragSessionSetup\r\n\r\n’ ) ;
2 let msg = {
3 "downlinks" : [ {
4 "priority" : "NORMAL" ,
5 "f_port" : 201 ,
6 "frm_payload" : Buffer . from( parsePackets ( ) [ 0 ] ) . toString ( ’base64’ )
7 } ]
8 } ;

Listing 6.8: Fragmentation session setup downlink message.
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In code listing 6.8 an example of the downlink message from the server to the node
for the fragmentation session setup is shown. What is special, is, that this message is
directly parsed from the fragmented file (fragmented_patch.txt) passed during the start
of the server (see code listing 6.3). In this file the first raw has all the information needed
for the explained setup ready and correct aligned. For an example check in code listing
6.9 the first row. The first number 02 indicates the FragSessionSetupReq and then the
next numbers would map to:

FragSession = 0x00
NbFrag = 0x0015

FragSize = 0x30
Control = 0x00

Padding = 0x0d

Descriptor = 0x00000000

1 02 00 15 00 30 00 0d 00 00 00 00
2
3 08 01 00 6a b8 00 4d 25 18 2 f 58 65 89 6b a f 34 e0 07 ab 6a 8e 24 33 cc f7

50 b1 df e4 16 0a 2b e0 19 6b f4 88 b0 50 a f d5 05 bf f c bf 48 c9 1a 72
e8 4b

4
5 08 02 00 49 21 05 ad 36 44 7d 0e 92 25 96 b2 1a 6a b1 6a 0d 89 a9 83 f1 96

e6 23 24 ce 65 2a ed 59 bf b9 e1 9 f bf 59 45 e4 6d f6 a9 9 f 1d f2 73 93
68 3c

6
7 08 03 00 e6 92 01 9d 53 86 e2 5b e8 9 f 04 ed b0 f e 2c 23 ee b2 11 c1 c0 eb

b5 20 05 07 07 3 f db 89 8d d7 20 47 95 f7 8 f 05 cc 3b ce 63 dc bf 8e 23
0 f 1 f

8
9 08 04 00 0b 1b 3a b6 8 f 03 12 f7 91 34 40 be 32 94 f7 d8 3d 7e 9e d3 28 05

12 7c 9b 91 51 f c 94 61 8c be ab 44 11 5e a1 36 c0 11 42 cd 31 a3 86 ec
43 11

10
11 08 05 00 bb c5 e7 ee 04 3c 9d f2 f2 8e e9 a4 63 7c 9a 8c ec ea 65 f6 2c 20

22 81 05 f2 d3 04 2d 55 21 ce 58 f0 94 e0 d7 e7 75 8b cc 49 7d 99 04 97
6 f ce

12
13 08 06 00 50 e4 93 2 f c9 9c 0e 6b ad ea 00 f9 60 f8 9a d3 93 a0 49 96 bf db

c1 b2 dc 52 ab 73 61 69 66 51 9 f 6e f 8 ad 33 6d 58 cb e0 e6 a9 45 40 da
87 cd

14 . . .
15 . . .
16 . . .

Listing 6.9: Example of a fragmented data block file.
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6.1.7. Multicast class C request

For the multicast class c session start request, the server has to send a McClassCSes-
sionReq message with the data listed in table 6.6.

McGroupIDHeader Session
Time

SessionTimeOut DLFrequ DR

size
(bytes)

1 4 1 3 1

Table 6.6.: McClassCSessionReq [8].

• McGroupIDHeader
McGroupID is the identifier of the multicast group being used. It was defined
during the multicast session setup (table 6.4).

• Session Time
This defines the time of the start of the Class C window, and is expressed as the
time in seconds since 00:00:00, Sunday 6th of January 1980 (start of the GPS
epoch) modulo 232. Note, that this is the same format as the time field in the
beacon frame.

• SessionTimeOut
This encodes the maximum length in seconds of the multicast session. After this
timeout the node will switch back to class A.

• DLFrequ
Encodes the frequency used for the multicast. This field is a 24 bits unsigned
integer. The actual channel frequency in Hz is 100xDlFrequ. This allows setting
the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz
steps.

• DR
DR is the index of the data rate used for the multicast. As a reference which DR
exists check the presented values in the appendix A.1.

In code listing 6.10, an example of the downlink message from the server to the node for
the multicast class C session request is shown.
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1 conso l e . l og ( ’SENDING sendMcClassCSessionReq !\r\n’ ) ;
2 let msg = {
3 "downlinks" : [ {
4 "priority" : "NORMAL" ,
5 "f_port" : 200 ,
6 "frm_payload" : Buffer . from ( [
7 0x4 ,
8 0x0 , // mcgroupidheader
9 startTime & 0 x f f , ( startTime >> 8) & 0 x f f , ( startTime >> 16) & 0 x f f

, ( startTime >> 24) & 0 x f f ,
10 0xFF , // s e s s i o n t imeout
11 0x9d , 0xba , 0x84 , // 8 ’698 ’525Hz
12 0x03 // Datarate 3
13 ] ) . toString ( ’base64’ )
14 } ]
15 } ;

Listing 6.10: Example multicast class C session request message.

6.1.8. Firmware multicast fragments

In this section of the FUOTA protocol, the node has already switched to class C and
is now expecting the fragmented data blocks. The FUOTA server sends these packages
after each other to the node. The code listing 6.11 shows the function in the FUOTA
server, which takes on after another raw from the fragments file (see code listing 6.9)
and sends it as a multicast message.

1
2 f o r ( let p o f packets ) {
3 // f i r s t row i s header , don ’ t use t h a t one
4 i f ( counter === 0) {
5 counter++;
6 cont inue ;
7 }
8
9 let msg = {

10 "downlinks" : [ {
11 "priority" : "NORMAL" ,
12 "f_port" : 201 ,
13 "frm_payload" : Buffer . from(p) . toString ( ’base64’ ) ,
14 "class_b_c" : {
15 "gateways" : [
16 {
17 "gateway_ids" : {
18 "gateway_id" : GATEWAY_ID
19 }
20 }
21 ]
22 }
23 } ]
24 } ;
25
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26 c l i e n t . pub l i sh ( ‘ v3/${ mcDetai ls . app l i ca t i on_id }/ d e v i c e s /${ mcDetai ls .
device_id }/down/push ‘ , Buffer . from(JSON. s t r i n g i f y (msg) , ’utf8’ ) ) ;

27 await s l e e p (2100) ;
28 }

Listing 6.11: Example loop for sending the fragmented data blocks.

6.1.9. FW failed/complete message

At the end of the protocol, the FUOTA server expects a message on port 146. This
message tells the server if the received patch on the node has the same HASH value as
the server calculated. By this, the server knows if the fragmented data block transfer
protocol has worked correctly and stitched the fragments back to the correct patch
binary. After that, the node will further process it. The tasks on FUOTA server side
are done.
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Figure 6.5.: FUOTA detailed protocol.
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6.2. LNS & Gateway

In the following section the used gateway and LNS environment in this work are ex-
plained.

6.2.1. Gateway

As mentioned in chapter 5.2, a hardware stack with a Raspberry Pi was selected for
the gateway. For the gateway stack in previous work, the LoRaBasicStation [62] service
was installed. This service is an implementation of a LoRa packet forwarder, which
forwarder is a program running on the host of a LoRa-based gateway (with or without
GPS). It forwards LoRa packets received by the concentrator to a LoRaWAN Network
Server (LNS) through a secured IP link [53].
For the LNS in previous work the Things Stack [73] and the Balena environment [14]
were used. The experience showed that there are some problems regarding certificates on
the different services (gateway driver, LoRaWAN network server and application server).
The basic functionalities were working but the advanced function regarding multicast
caused problems.
One way to simplify the setup, was to install a UDP package broker on the gateway. This
was done using the chirpstack-gateway-OS-base package provided by the Chirpstack en-
vironment. The chirpstack-gateway-OS-base supports the used gateway hardware stack
(figure 5.17, chapter 5.2) with the Raspberry Pi and the RAK831 LoRa concentrator
module. This service provides the ChirpStack concentrator and ChirpStack Gateway
Bridge pre-installed including a CLI utility for gateway configuration. The gateway was
then able to connect to after the Things Stack LNS [73] or the Chirpstack LNS [19].

6.2.2. LNS

For the LoRaWan network server, the Chirpstack implementation will be used. The
reason for using the Chirpstack is, that it is providing more flexibility and the example
FUOTA application [59] from Semtech was tested using the Chirpstack server. For the
installation the published documentation [19] will give a guide.
In code listing 6.12, the initialization of the database instances for the network server
and application server is made. The name and password have then to be placed in the
configuration file (.toml file) of the network server (code listing 6.13) and application
server (code listing 6.14). In the network server configuration the used frequency plan
has to be defined. In the application server the web-frontend address and port as well
as login credentials have to be set.
With the following commands the networks server and application server will be started
and can be accessed via the cli interface or the browser over the address http://localhost:8080.

sudo systemctl start chirpstack − network − server

sudo systemctl start chirpstack − application − server
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1 −− s e t up the user s and the passwords
2 −− ( note t h a t i t i s important to use s i n g l e quo te s and a semicolon at the

end ! )
3 create role ch i rpstack_as with l o g i n password ’dbpassword ’ ;
4 create role chirpstack_ns with l o g i n password ’dbpassword ’ ;
5
6 −− c r e a t e the database f o r the s e r v e r s
7 create database ch i rpstack_as with owner ch i rpstack_as ;
8 create database chirpstack_ns with owner chirpstack_ns ;
9

10 −− change to the ChirpStack App l i ca t i on Server database
11 \c ch i rpstack_as
12
13 −− enab l e the pq_trgm and hs t o r e e x t e n s i o n s
14 −− ( t h i s i s needed to f a c i l i t a t e the search f e a t u r e )
15 create extens i on pg_trgm ;
16 −− ( t h i s i s needed to s t o r e a d d i t i o n a l k/v meta−data )
17 create extens i on hs to r e ;
18
19 −− e x i t p s q l
20 \q

Listing 6.12: Chirpstack postgres database init.

1 [ g ene ra l ]
2 l o g _ l e v e l=4
3
4 [ p o s t g r e s q l ]
5 dsn="postgres: // chirpstack_ns:dbpassword@localhost/chirpstack_ns?sslmode=

disable"
6
7 [ network_server ]
8 net_id="000000"
9

10 [ network_server . band ]
11 name="EU_863_870"
12 . . .
13 . . .

Listing 6.13: Chirpstack network server configeration.

1 [ g ene ra l ]
2 l o g _ l e v e l=4
3
4 [ p o s t g r e s q l ]
5 dsn="postgres: // chirpstack_as:dbpassword@localhost/chirpstack_as?sslmode=

disable"
6
7 [ a p p l i c a t i o n _ s e r v e r . externa l_api ]
8 jwt_secret="verysecret"
9 . . .

10 . . .

Listing 6.14: Chirpstack application server configeration.
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6.3. Demonstrator node firmware

In this section, the firmware implementation of the bootloader and the LoRaWAN
FUOTA application will be presented. First the general firmware architecture will be
shown and further the different components are considered in detail.

6.3.1. Firmware architecture

In figure 6.6, the firmware stack for the demonstrator node (chapter 5.1) is shown. This
stack shows on an abstract level which different modules are used for the demonstrator
node to fulfill its task of a firmware update over the air. The different modules are
explained in following list.

LoRa board abstraction
layer

LoRaMac-node
software stack

secure Bootloader

HW driver

McuLib

general Application FUOTA Application

MCUXpresso SDK Stack for LPC55S16

LittleFS

FreeRTOS

McuButton McuLED

McuTime

minINI

SHT31 RTC Display ext. Flash

Figure 6.6.: Firmware stack.

• MCUXpresso SDK
The MCUXpresso SDK is a comprehensive software enablement package designed
to simplify and accelerate application development with Arm® Cortex®-M-based
devices from NXP. The MCUXpresso SDK includes a production-grade software
with integrated RTOS (optional), integrated enabling software technologies (stacks
and middleware), reference software, and more[51]. The stack is shown in figure
6.7

• HW driver
The hardware drivers are implementing the functionality of the hardware compo-
nents used on the demonstrator node. This includes the I2C driven SHT31 tem-
perature and humidity sensor, RTC and OLED display aswell as the SPI driven
W25Q NOR flash chip.

• McuLib
The McuLib is a scalable C/C++ library from the McuOnEclipse [64] project by
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Figure 6.7.: MCUXpresso SDK stack [51].

Erich Styger. This library adds additional functionality to the hardware driver.
For the demonstrator node the integations of the LitteFS, FreeRTOS, minIni,
SSD1306, McuTime, McuSHT31, McuLEDs and McuButtons were used [65].

– LittleFs
The LittleFs is a little fail-safe filesystem designed for microcontrollers. The
LittleFs is designed to handle random power failures. All file operations have
strong copy-on-write guarantees and if power is lost the filesystem will fall
back to the last known good state (Power-loss resilience). Further the
LittleFs is designed with flash in mind, and provides wear leveling over dy-
namic blocks. Additionally, LittleFs can detect corrupted blocks and work
around them (Dynamic wear leveling). It is also designed to work with a
small amount of memory. RAM usage is strictly bounded, which means RAM
consumption does not change as the file system grows. The file system con-
tains no unbounded recursion and dynamic memory is limited to configurable
buffers that can be provided statically (Bounded RAM/ROM) [40].

– FreeRTOS
The FreeRTOS is a real-time operating system (RTOS) for microcontrollers
and small microprocessors. It is scalable in size, with usable program memory
footprint as small as 9KB [27]. The McuLib addes to the common FreeRTOS
kernel configuration possibilities and an easy integration to the other compo-
nents. In this thesis the FreeRTOS will be used to simplify the functionality
with the LittleFs and memory management.

– minIni
The minIni is s file parser for initialization data in flash memory. The data
will be saved as a key-value pair in different sections. This function enables
to store metadata from the firmware update in initialization files which than
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the bootloader will be able to read in an optimized way.

– SSD1306
The SSD1306 library will give the functionality to draw or write with different
fonts to the OLED display.

– McuTime
The McuTime gives the functionality to read from different RTC times and
convert it to human-readable time formats. Further it can be configured
that the McuLib will calibrate the internal RTC from an external RTC in a
continuous time period. This is often used because the external RTC is more
accurate but the reading over the I2C takes more time and can be blocking.
Calibrating the internal RTC from time to time gives the system a faster and
accurate time management.

– McuSHT31
McuSHT31 give a generic interface to request the status and the temperature
as well the humidity from the sensor.

– McuLEDs
The McuLED driver builds a generic interface to switch on/off different con-
figured LEDs.

– McuButtons
The McuButton library give the user the possibility to add different buttons
to the application. Further it is possible to add a debouncing function to the
button GPIO, which will add a software debouncing to the logic level switch
during a push/pull of the buttons.

– Shell
A useful functionality, that the McuLib provides, is the Shell. The Shell is a
command line interface which can uses the UART or RTT interfaces. This
allows the user to interact with the node via a terminal. Every here mentioned
library has a Shell interface. This helps to debug the node in the developing
phase. Fore example it is possible to write and read files on the external flash
via the Shell interface through an external terminal.

• secure Bootloader
The secure Bootloader section has the task after every call through a restart, reset
or by an application, to check if there is a new patch file ready in the memory.
Further it has to check the integrity of the patch file, like the HASH and firmware
version it contains. From this information the bootloader will run a merge of the
patch and actual firmware (both stored in the external flash) and then boot the
new generated image with loading it to the internal flash. In chapter 6.3.3 the
functionality will be explained in detail.

• LoRaMac-node
The LoRaMac-node software stack is the official LoRaWAN protocol stack im-

76



CHAPTER 6. SOFTWARE DESIGN

plementation by Semtech [58]. In this software stack, many microcontroller are
covered except the LPC55S16. A former master thesis [18] has then integrated
the stack for the LPC55S16 microcontroller. With this project as a base and the
porting guideline of Semtech [60], Erich Styger ported the stack for the use on the
LPC55S16-EVK. All steps are well explained on the McuOnEclipse blog [67].
The basic LoRaMac-node stack from Samtech has the following folder structure:

src/
apps
boards
mac
peripherals
radio
system

– Apps:
In the app folder, the user specific application source files will be placed.
There are already some basic examples in this folder, which helps the devel-
oper to start.

– Boards:
The boards folder contains board specific implementations of hardware plat-
form drivers

– Mac:
The mac folder contains the source files, which provide the functionality of
the official LoRaWAN protocol.

– Peripherals:
The peripherals folder contain the key handling and the drivers for the secure
elements.

– Radio:
The radio folder inculdes the driver for the common LoRa radio chips.

– System:
The system folder contains the generic abstraction layer for the different hard-
ware platforms.
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• Application
The application includes the basic application functionality the demonstrator node
should provide. The basic functionality should be periodically sending the tem-
perature and humidity via the LoRaWAN network to the server and simultaneous
showing the sensor date on the display on the node. Next to the basic application,
the FUOTA application will be implemented as well. The detailed explanation of
the FUOTA application is presented in chapter 6.3.2.

These modules will build the functionality shown in the top-level firmware architecture
figure 6.8.

LoRaMac

FUOTA App

User application

Mcast Frag Clock
sync

LittleFS

SPI Flash

Update Agent

secure

Bootloader

Figure 6.8.: Firmware top-level design.
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6.3.2. FUOTA application

The FUOTA application will have to fulfill the following main task.

• Metadata handling:
The application has to handle the receiving metadata presented in chapter 6.1.3
figure 6.3.

• Time synchronization:
For a successful multicast session the node time has to be synchronized with the
server. This behavior is presented in section 6.1.8.

• Multicast session initialization:
The multicast session request by the server 6.1.5 has to be handled.

• Fragmented data block transfer initialization:
Then the fragmented data request from the server 6.1.6 has to be checked and
answered.

• Class C switch:
After the class C switch timer, defined by the multicast class C session request, is
triggered, the node has to switch to the class C.

• Fragment handling:
The sent multicast fragments have to be cached and then checked for completeness.
After received all fragments, they have to be stored in a patch file on the external
memory. A HASH integrity value will then be sent to the server as a confirmation
message, that the session in finised.

• Bootloader call:
After a patch was successfully received, the bootloader have to be called.

This process is shown in the FUOTA application flow diagram in figure 6.9. For a better
overview, the flow diagram is divided into two parts. The second part (marked with
grey colored background and dotted boundaries) is described in figure 6.10.
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Figure 6.9.: FUOTA application flow diagram.
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Figure 6.10.: FUOTA application detailed flow diagram.
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6.3.2.1. Metadata handling

Figure 6.11 shows the detailed flow of the metadata handling when it is received on
the node. To have a better metadata handling a struct (code listing 6.15) was defined
storing all the data. The function FUOTA_FW_Meta_Data() in code listing 6.16 then
parses the received payload and stores the data in the presented struct. The metadata
will then be displayed and stored in the external flash in the file called FWconf.ini. Code
listing 6.17 shows how this FWconf.ini is configured after receiving the metadata.

1 typedef struct
2 {
3 uint32_t patchSize_INI ;
4 uint8_t fwVersion_INI [ 4 ] ;
5 uint32_t patchesCNT_INI ;
6 uint32_t f ragS ize_INI ;
7 uint32_t fragCNT_INI ;
8 uint8_t patchSHA_INI [ 3 2 ] ;
9 uint8_t newImgSHA_INI [ 3 2 ] ;

10 uint32_t fwCNT_INI ;
11 }fw_conf_INI_t ;

Listing 6.15: Metadata struct.

1 uint8_t FUOTA_FW_Meta_Data( LmHandlerAppData_t∗ appData )
2 {
3
4 i f ( appData−>B u f f e r S i z e ==43)
5 {
6 fwConf_data . patchSize_INI = ( appData−>Buf f e r [2] < <16) + ( appData−>

Buf f e r [1] < <8) + appData−>Buf f e r [ 0 ] ;
7 fwConf_data . fwVersion_INI [ 0 ] = appData−>Buf f e r [ 3 ] ;
8 fwConf_data . fwVersion_INI [ 1 ] = appData−>Buf f e r [ 4 ] ;
9 fwConf_data . fwVersion_INI [ 2 ] = appData−>Buf f e r [ 5 ] ;

10 fwConf_data . fwVersion_INI [ 3 ] = appData−>Buf f e r [ 6 ] ;
11 fwConf_data . patchesCNT_INI = appData−>Buf f e r [ 7 ] ;
12 fwConf_data . f ragS ize_INI = appData−>Buf f e r [ 8 ] ;
13 fwConf_data . fragCNT_INI = ( appData−>Buf f e r [10] < <8) + appData−>

Buf f e r [ 9 ] ;
14 for ( int i = 0 ; i <32; i++){
15 fwConf_data . patchSHA_INI [ i ] = appData−>Buf f e r [ i +11] ;
16 }
17
18 //TODO: Disp lay FW Data
19 update_and_diplayFW_info(&fwConf_data , false , fa l se ) ;
20
21 return ERR_OK;
22 }
23 else {
24 return ERR_FAILED;
25 }
26 }

Listing 6.16: Metadata parsed and stored.
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1 #[ 1 ] marks the s e c t i o n 1
2 [ 1 ]
3 patchSHA=0ee2f03bb307031c9c764301184164ae75187f846aaab489062d30da5b9da7f7
4
5 patchS ize=0
6
7 fwCNT=10
8
9 fragCNT=10

10
11 patchCNT=10
12
13 fwVersion =01010101
14
15 newImgSHA=420 c96 f0094042b04e9c45 f f f15d f56993c446ed9cce7 f53ed7c006c8ac92d0d
16
17 f r a g S i z e=0

Listing 6.17: Example config of FWconf.ini file.
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Gateway LNS
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Demonstrator node
Application FUOTA LoRaWAN

AppUplink() ∗
call

periodically

Metadata
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FUOTA FW Meta Data()
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diplay Metadata()

LmHandlerSend(RND(1byte))

FUOTA FW new HASH()

Metadata
FPort 145

LmHandlerSend(RND(1byte))

save HASH Data()

diplay HASHdata()

IsTxFuotaProcess = 1;

FUOTA Uplink()
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Figure 6.11.: Flow metadata handling.
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6.3.2.2. Time synchronization

After the metadata is received and stored, the node switches to the FUOTA application.
This means it will run the Prepare_FuotaTxFrame function periodically. First, it will
send the ClockSyncRequest messages to the server to synchronize with the server. This
flow is shown in figure 6.12. The following actions for the complete setup for the FUOTA
session will be handled in the file shown in figure 6.13. These files belong to the official
LoRaMac-node stack form Semtech.

1 stat ic void Prepare_FuotaTxFrame ( void ) {
2 LmHandlerErrorStatus_t s t a t u s = LORAMAC_HANDLER_ERROR;
3 i f ( LmHandlerIsBusy ( ) == true ) {return ; }
4 i f ( I sMcSess ionStarted == fa l se )
5 {
6 i f ( I sF i l eTrans f e rDone == fa l se )
7 {
8 i f ( IsClockSynched == fa l se )
9 {

10 s t a t u s = LmhpClockSyncAppTimeReq ( ) ;
11 }
12 else
13 {
14 AppDataBuffer [ 0 ] = randr ( 0 , 255 ) ;
15 // Send random packe t
16 LmHandlerAppData_t appData =
17 {
18 . Buf f e r = AppDataBuffer ,
19 . B u f f e r S i z e = 1 ,
20 . Port = 1 ,
21 } ;
22 s t a t u s = LmHandlerSend ( &appData ,

LORAMAC_HANDLER_UNCONFIRMED_MSG) ;
23 }
24 }
25 else {
26 AppDataBuffer = calc_patchHASH ( ) ;
27 // Send HASH
28 LmHandlerAppData_t appData =
29 {
30 . Buf f e r = AppDataBuffer ,
31 . B u f f e r S i z e = 32 ,
32 . Port = 146 ,
33 } ;
34 s t a t u s = LmHandlerSend ( &appData ,

LORAMAC_HANDLER_UNCONFIRMED_MSG) ;
35 }
36 i f ( s t a t u s == LORAMAC_HANDLER_SUCCESS )
37 {}
38 }
39 }

Listing 6.18: Periodic FUOTA function.
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Gateway LNS
Fuota server

Demonstrator node
Application FUOTA LoRaWAN

LmhpClockSyncAppTimeReq( );

FPort 202
Clock syny

ANS
OnSysTimeUpdate();

IsClockSynched = isSynchronized;

LmHandlerSend(RND(1byte))

FUOTA Uplink()
∗ call periodically

Figure 6.12.: Flow clock synchronization.
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LmhpFragmentaion.c|.h
LmphRemoteMcasSetup.c|.h

Figure 6.13.: FUOTA session important files.
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6.3.2.3. Multicast session initialization

In figure 6.14 the flow of the MulticastSessionSetup is shown. In code listing 6.19,
the setup of the confirmation payload is shown. If the multicast channel couldn’t be
initialized, the answer will send error 0x00 with the group ID back to the server.

1 uint8_t idError = 0x01 ; // One b i t va lue
2 i f ( LoRaMacMcChannelSetup ( &channel ) == LORAMAC_STATUS_OK )
3 {
4 idError = 0x00 ;
5 }
6 LmhpRemoteMcastSetupState . DataBuffer [ dataBuf fer Index++] =

REMOTE_MCAST_SETUP_MC_GROUP_SETUP_ANS;
7 LmhpRemoteMcastSetupState . DataBuffer [ dataBuf fer Index++] = ( idError << 2 )

| McSessionData [ id ] . McGroupData . IdHeader . F i e l d s . McGroupId ;

Listing 6.19: Multicast session setup answer.

Gateway LNS
Fuota server

Demonstrator node

Application FUOTA LoRaWAN

FPort 200
McGroupSe-

tupReq

FPort 200
McGroupSe-

tupAns

repeat REQ if
Ans error

FUOTA Uplink()
∗ call periodically

LmhpRemoteMcastSetupOnMcpsIndication()

Figure 6.14.: Flow Multicast session setup request
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6.3.2.4. Fragmented data block transfer initialization

In figure 6.15, the flow of the FragmentationSessionSetup is shown. In code listing 6.20
the setup answer payload is shown. The status variable will contain the error code if
the initialization fails.

1
2 i f ( f ragSes s ionData . FragGroupData . Control . F i e l d s . FragAlgo > 0 )
3 {
4 s t a t u s |= 0x01 ; // Encoding unsupported
5 }
6
7 i f ( ( f ragSes s ionData . FragGroupData . FragNb > FRAG_MAX_NB ) | |
8 ( f ragSes s ionData . FragGroupData . FragSize > FRAG_MAX_SIZE ) | |
9 ( ( f ragSes s i onData . FragGroupData . FragNb ∗ f r agSes s ionData .

FragGroupData . FragSize ) > FragDecoderGetMaxFileSize ( ) ) )
10 {
11 s t a t u s |= 0x02 ; // Not enough Memory
12 }
13
14 s t a t u s |= ( f ragSes s ionData . FragGroupData . FragSess ion . F i e l d s . FragIndex << 6

) & 0xC0 ;
15 i f ( f ragSes s ionData . FragGroupData . FragSess ion . F i e l d s . FragIndex >=

FRAGMENTATION_MAX_SESSIONS )
16 {
17 s t a t u s |= 0x04 ; // FragSess ion index not suppor ted
18 }
19
20 // Descr ip tor i s not r e a l l y de f i ned in the s p e c i f i c a t i o n
21 // Not c l e a r how to handle t h i s .
22 // Current ly the d e s c r i p t o r i s a lways c o r r e c t
23 i f ( f ragSes s ionData . FragGroupData . Desc r ip to r != 0 x01020304 )
24 {
25 // s t a t u s |= 0x08 ; // Wrong Descr ip tor
26 }
27
28 i f ( ( s t a t u s & 0x0F ) == 0 )
29 {
30 // The FragSess ionSetup i s accepted
31 f ragSes s ionData . FragGroupData . I sAc t i v e = true ;
32 f ragSes s ionData . FragDecoderPorcessStatus = FRAG_SESSION_ONGOING;
33 FragSessionData [ f ragSes s ionData . FragGroupData . FragSess ion . F i e l d s .

FragIndex ] = f ragSes s i onData ;
34
35 FragDecoderIn it ( f ragSes s ionData . FragGroupData . FragNb ,
36 f ragSes s i onData . FragGroupData . FragSize ,
37 &LmhpFragmentationParams−>DecoderCal lbacks ) ;
38
39 }
40 LmhpFragmentationState . DataBuffer [ dataBuf fer Index++] =

FRAGMENTATION_FRAG_SESSION_SETUP_ANS;
41 LmhpFragmentationState . DataBuffer [ dataBuf fer Index++] = s t a t u s ;
42 isAnswerDelayed = fa l se ;

Listing 6.20: Fragmentation session setup answer.
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Figure 6.15.: Flow Fragmented session setup request.
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6.3.2.5. Class C switch

In figure 6.16 the flow of the multicastClassC request is shown. In code listing 6.21 the
setup initialization of the timer depending on the receive time for starting the session is
shown. If after this SessionStartTimer triggers, the LoRaMacHandler will request with
following call: LmHandlerRequestClass(CLASS_C); an Class C switch. If there was an
error with the time management the node will send an error message with 0x10 back to
the server on FPort 201.

1 SysTime_t curTime = { . Seconds = 0 , . SubSeconds = 0 } ;
2 curTime = SysTimeGet ( ) ;
3
4 int32_t t imeToSess ionStart = McSessionData [ id ] . SessionTime − ( curTime .

Seconds ) ;
5 i f ( t imeToSess ionStart > 0 )
6 {
7 // S t a r t s e s s i o n s t a r t t imer
8 TimerSetValue ( &Sess ionStartTimer , t imeToSess ionStart ∗ 1000 ) ;
9 TimerStart ( &Sess ionStartTimer ) ;

10
11 DBG( "Time2SessionStart: %ld ms\n" , t imeToSess ionStart ∗ 1000 ) ;
12
13 LmhpRemoteMcastSetupState . DataBuffer [ dataBuf fer Index++] = s t a t u s ;
14 LmhpRemoteMcastSetupState . DataBuffer [ dataBuf fer Index++] = (

t imeToSess ionStart >> 0 ) & 0xFF ;
15 LmhpRemoteMcastSetupState . DataBuffer [ dataBuf fer Index++] = (

t imeToSess ionStart >> 8 ) & 0xFF ;
16 LmhpRemoteMcastSetupState . DataBuffer [ dataBuf fer Index++] = (

t imeToSess ionStart >> 16 ) & 0xFF ;
17 break ;
18 }
19 else
20 {
21 // Sess ion s t a r t time b e f o r e current dev i c e time
22 s t a t u s |= 0x10 ;
23 }

Listing 6.21: Class C switch timer init.
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Figure 6.16.: Flow multicast class C switch.
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6.3.2.6. Fragment handling

After a class C switch, the node will receive the fragments as a multicast message.
In code listing 6.22, the process for receiving fragments is shown. The function call
FragDecoderProcess will decode the fragments as it is described in chapter 4.2.1.3. This
function will also use the callback function FragDecoderWrite and FragDecoderRead in
the FUOTA application and the functions OnProgress and OnDone will print feedback
to the console. All these callback functions are shown in code listing 6.23.

1
2 uint8_t f rag Index = 0 ;
3 uint16_t fragCounter = 0 ;
4 fragCounter = ( mcpsIndicat ion −>Buf f e r [ cmdIndex++] << 0 ) & 0x00FF ;
5 fragCounter |= ( mcpsIndicat ion −>Buf f e r [ cmdIndex++] << 8 ) & 0xFF00 ;
6 f rag Index = ( fragCounter >> 14 ) & 0x03 ;
7 fragCounter &= 0x3FFF ;
8
9 i f ( FragSess ionData [ f rag Index ] . FragDecoderPorcessStatus ==

FRAG_SESSION_ONGOING )
10 {
11 FragSessionData [ f rag Index ] . FragDecoderPorcessStatus =

FragDecoderProcess ( fragCounter ,
12 &mcpsIndicat ion −>Buf f e r [ cmdIndex ] ) ;
13 FragSess ionData [ f rag Index ] . FragDecoderStatus = FragDecoderGetStatus ( ) ;
14 i f ( LmhpFragmentationParams−>OnProgress != NULL )
15 {
16 LmhpFragmentationParams−>OnProgress (
17 FragSess ionData [ f rag Index ] . FragDecoderStatus . FragNbRx ,
18 FragSess ionData [ f rag Index ] . FragGroupData . FragNb ,
19 FragSess ionData [ f rag Index ] . FragGroupData . FragSize ,
20 FragSess ionData [ f rag Index ] . FragDecoderStatus . FragNbLost ) ;
21 }
22 }
23 else
24 {
25 i f ( FragSess ionData [ f rag Index ] . FragDecoderPorcessStatus >= 0 )
26 {
27 // Fragmentation s u c c e s s f u l l y done
28 FragSess ionData [ f rag Index ] . FragDecoderPorcessStatus =

FRAG_SESSION_NOT_STARTED;
29 i f ( LmhpFragmentationParams−>OnDone != NULL )
30 {
31 LmhpFragmentationParams−>OnDone(
32 FragSess ionData [ f rag Index ] . FragDecoderPorcessStatus ,
33 ( FragSess ionData [ f rag Index ] . FragGroupData . FragNb ∗
34 FragSess ionData [ f rag Index ] . FragGroupData . FragSize ) −
35 FragSess ionData [ f rag Index ] . FragGroupData . Padding ) ;
36 }
37 }
38 }
39 cmdIndex += FragSess ionData [ f rag Index ] . FragGroupData . FragSize ;
40 break ;
41 }

Listing 6.22: Fragment handler.
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1
2 stat ic int8_t FragDecoderWrite ( uint32_t addr , uint8_t ∗data , uint32_t s i z e

)
3 {
4 i f ( s i z e >= UNFRAGMENTED_DATA_SIZE )
5 {return −1; // Fa i l }
6 for ( uint32_t i = 0 ; i < s i z e ; i++ )
7 {UnfragmentedData [ addr + i ] = data [ i ] ; }
8 return 0 ; // Success
9 }

10
11 stat ic int8_t FragDecoderRead ( uint32_t addr , uint8_t ∗data , uint32_t s i z e

)
12 {
13 i f ( s i z e >= UNFRAGMENTED_DATA_SIZE )
14 {return −1; // Fa i l }
15 for ( uint32_t i = 0 ; i < s i z e ; i++ )
16 { data [ i ] = UnfragmentedData [ addr + i ] ; }
17 return 0 ; // Success
18 }
19
20 stat ic void OnFragProgress ( uint16_t fragCounter , uint16_t fragNb , uint8_t

f r a g S i z e , uint16_t fragNbLost )
21 {
22 p r i n t f ( "\n###### =========== FRAG_DECODER ============ ######\n" ) ;
23 p r i n t f ( "###### PROGRESS ######\n" ) ;
24 p r i n t f ( "###### ===================================== ######\n" ) ;
25 p r i n t f ( "RECEIVED : %5d / %5d Fragments\n" , f ragCounter , fragNb ) ;
26 p r i n t f ( "%5d / %5d Bytes\n" , f ragCounter ∗ f r a g S i z e , fragNb ∗ f r a g S i z e

) ;
27 p r i n t f ( "LOST : %7d Fragments\n\n" , fragNbLost ) ;
28 }
29
30
31 stat ic void OnFragDone ( int32_t status , uint32_t s i z e )
32 {
33 FileRxCrc = Crc32 ( UnfragmentedData , s i z e ) ;
34 I sF i l eTrans f e rDone = true ;
35 p r i n t f ( "\n###### =========== FRAG_DECODER ============ ######\n" ) ;
36 p r i n t f ( "###### FINISHED ######\n" ) ;
37 p r i n t f ( "###### ===================================== ######\n" ) ;
38 p r i n t f ( "STATUS : %ld\n" , s t a t u s ) ;
39 p r i n t f ( "CRC : %08lX\n\n" , FileRxCrc ) ;
40 }

Listing 6.23: Fragmentation callback functions.

93



CHAPTER 6. SOFTWARE DESIGN
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Figure 6.17.: Flow fragmented data transport.
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6.3.2.7. Bootloader call

At the end of the FUOTA process, the application will switch back to class A and calcu-
late the HASH value of the decoded fragmented data in the array UnfragmentedData[ ].
Then the HASH value will be sent on the FPort 146 back to the server. If the calculate
HASH is equal to the stored patchSHA_INI (code listing 6.15) in the FW_config.ini
file, the file will be stored as patch.bin to the external flash and the bootloader (chapter
6.3.3) will be called.

Calch patch
HASH

Gateway LNS
Fuota server

Demonstrator node
Application FUOTA LoRaWAN

IsFileTransferDone = true;

sendHash()

FPort 146
patchHASH

Check HASH
with metadata

Start
bootloader

Figure 6.18.: Flow finishing FUOTA session.
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6.3.3. Bootloader

In figure 6.19 the flow graph of the bootloader process is shown. The bootloader is
designed to use the LittelFS as a file system to access the external W25Q flash, as
already described in 6.3.1. For the bootloader itself, a new configuration file, named
Boot_conf.ini is generated. Next to it, this data from the Boot_conf.ini file (example
configuration shown in listing 6.25) will be stored in a struct shown in code listing 6.24.

• bootCNT_INI:
This variable indicated how often the bootloader has been trying to boot. It will
be set to 0 of the boot of a image was sucessful. If anything with the boot process
went wrong, and the bootloader is called more than three times in a row, it will
boot the backup image.

• actFW_INI[4]:
This variable represents the actual firmware version that is running.

• newFW_INI[4]:
This variable will be taken from the FW_conf.ini file. Here, if a new firmware is
ready to boot, its firmware version will be stored.

• patchState_INI:
In the patchState_INI information about the patch could be stored. This variable
is however not used at the moment.

• boot_Img_INI:
The boot_Img_INI is a flag that indicates if the bootloader is called on purpose.

1 typedef struct
2 {
3 uint32_t bootCNT_INI ;
4 uint8_t actFW_INI [ 4 ] ;
5 uint8_t newFW_INI [ 4 ] ;
6 uint8_t patchState_INI ;
7 bool boot_Img_INI ;
8 }boot_conf_INI_t ;

Listing 6.24: Bootdata struct.

1 #[ 1 ] marks the s e c t i o n 1
2 [ 1 ]
3 actFW=01020304
4
5 newFW=01020304
6
7 bootIMG=0
8
9 bootCNT=0

10
11 patchState=1

Listing 6.25: Example config of Boot_conf.ini file.
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Figure 6.19.: Bootloader top level flow diagram.
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The most important task the bootloader has to fulfill, is, that there is always a LoRa
application running. To guarantee this, an external file named Backup.bin will be placed
in the external flash. This backup image has to be able to connect to a LoRaWAN
network and receive a new image. This means, the backup image will run the basic
tasks explained in chapter 6.3.2. Next to this, the bootloader has to guarantee the
integrity of the new image which has to be flashed. This is done with checking the
firmware version and mainly with calculating and comparing the HASH of the patch file
as well as the HASH of the newly merged and built image with the metadata stored in
the FW_conf.ini file.
If the integrity is guaranteed, the bootloader should build a new image from the actual
running firmware and the patch file received from the FUOTA process. Both binary files
are stored in the external flash named act_FW.bin and patch.bin. To merge this file
to a new binary file, named new_FW.bin, the janpatch [33] library will be used with
the LittleFs as its filesystem. In code listing 6.27 the function patchNewFwFile(unsigned
char* sha) integrads the janpatch library in the bootloader application. First the file
system has to open all three files. Then the library needs information about the buffer
sizes it can use and what the callback function (bd_fread, bd_fwrite, bd_fseek, bd_ftell,
progress) are. The library will use these callback functions as posixs file system function
calls. The code listing 6.26 shows the wrapper function, that the library can be used
with the LittleFs function calls. With these informations initialized and the needed files
created, the patch function janpatch() is called. After a successful patch the file system
will close all files and the HASH of the newFW.bin will be calculated.

1 int bd_fseek ( l f s _ f i l e _ t ∗ f i l e , long int pos , int o r i g i n ) {
2 return ( int ) l f s _ f i l e _ s e e k ( l f s , f i l e , ( l f s _ s o f f _ t ) pos , o r i g i n ) ; ;
3 }
4
5 long int b d _ f t e l l ( l f s _ f i l e _ t ∗ f i l e ) {
6 return ( long int ) l f s _ f i l e _ t e l l ( l f s , f i l e ) ;
7 }
8
9 s i z e_t bd_fread ( void ∗ bu f f e r , s i z e_t elements , s i z e_t s i z e , l f s _ f i l e _ t ∗

f i l e ) {
10 return ( s i z e_t ) l f s _ f i l e _ r e a d ( l f s , f i l e , bu f f e r , ( l f s _ s i z e _ t ) s i z e ) ;
11 }
12
13 s i z e_t bd_fwrite ( const void ∗ bu f f e r , s i z e_t elements , s i z e_t s i z e ,

l f s _ f i l e _ t ∗ f i l e ) {
14 return l f s _ f i l e _ w r i t e ( l f s , f i l e , bu f f e r , ( l f s _ s i z e _ t ) s i z e ) ;
15 }

Listing 6.26: Mapping posix calls to LittlFS.
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1 uint8_t patchNewFwFile ( unsigned char∗ sha ) {
2 int r e s ;
3 int r e s u l t ;
4 l f s = McuLFS_GetFileSystem ( ) ;
5 JANPATCH_STREAM actFW ;
6 JANPATCH_STREAM patchF i l e ;
7 JANPATCH_STREAM newFW;
8 r e s = lfs_remove ( l f s , "newFW.bin" ) ;
9 r e s u l t = l f s _ f i l e _ o p e n ( l f s , &actFW , "act_FW.bin" , LFS_O_RDWR | LFS_O_CREAT|

LFS_O_APPEND) ;
10 i f ( r e s u l t < 0) {return ERR_FAILED; }
11
12 r e s u l t = l f s _ f i l e _ o p e n ( l f s , &patchFi le , "patch.bin" , LFS_O_RDWR |

LFS_O_CREAT| LFS_O_APPEND) ;
13 i f ( r e s u l t < 0) {return ERR_FAILED; }
14
15 r e s u l t = l f s _ f i l e _ s e e k ( l f s , &actFW , 0 , LFS_SEEK_END) ;
16 i f ( r e s u l t < 0) {
17 ( void ) l f s _ f i l e _ c l o s e ( l f s , &actFW) ;
18 return ERR_FAILED; }
19
20 r e s u l t = l f s _ f i l e _ s e e k ( l f s , &patchFi le , 0 , LFS_SEEK_END) ;
21 i f ( r e s u l t < 0) {
22 ( void ) l f s _ f i l e _ c l o s e ( l f s , &patchF i l e ) ;
23 return ERR_FAILED; }
24
25 r e s u l t = l f s _ f i l e _ o p e n ( l f s , &newFW, "newFW.bin" ,LFS_O_RDWR | LFS_O_CREAT|

LFS_O_APPEND) ;
26 i f ( r e s u l t < 0) {return ERR_FAILED; }
27
28 r e s u l t = l f s _ f i l e _ s e e k ( l f s , &patchFi le , 0 , LFS_SEEK_END) ;
29 i f ( r e s u l t < 0) {
30 ( void ) l f s _ f i l e _ c l o s e ( l f s , &patchF i l e ) ;
31 return ERR_FAILED; }
32
33 janpatch_ctx ctx = {
34 { ( unsigned char ∗) mal loc (256) , 256 } , // source b u f f e r
35 { ( unsigned char ∗) mal loc (256) , 256 } , // d i f f b u f f e r
36 { ( unsigned char ∗) mal loc (256) , 256 } , // t a r g e t b u f f e r
37 &bd_fread , &bd_fwrite , &bd_fseek , &bd_fte l l , &pro g r e s s
38 } ;
39
40 int j p r = janpatch ( ctx , &actFW , &patchFi le , &newFW) ;
41 i f ( j p r != 0) {return ERR_FAILED; }
42
43 l f s _ f i l e _ c l o s e ( l f s , &actFW) ;
44 l f s _ f i l e _ c l o s e ( l f s , &patchF i l e ) ;
45 l f s _ f i l e _ c l o s e ( l f s , &newFW) ;
46
47 i f ( W25_read_File_for_SHA ( "newFW.bin" , 512 , sha ) !=ERR_OK)
48 {return ERR_FAILED; }
49
50 return ERR_OK;
51 }

Listing 6.27: janpatch library integration.
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After a successful passed integrity check, the bootloader has to flash the newFW.bin to
the LoRaWAN application section in the internal flash. This is done with the function
call W25_read_and_flash shown in code listing 6.28. The newFW.bin will be flashed
in 512byte blocks to the internal flash. Important to mention is that before a page in
the internal flash can be programmed, the address space has to be erased.

1 uint8_t W25_read_and_flash ( const char∗ f i l ename , bool readFromBeginning ,
s i z e_t nofBytes ) {

2 uint8_t r e s u l t ;
3 stat ic int32_t f i l e P o s ;
4 s i z e_t f i l e S i z e ;
5 uint8_t buf [ 5 1 2 ] ;
6 i f ( nofBytes > 512) { nofBytes = 512 ;}
7
8 l f s = McuLFS_GetFileSystem ( ) ;
9 l f s _ f i l e _ t f i l e ;

10 l f s _ f i l e _ o p e n ( l f s , &f i l e , f i l ename , LFS_O_RDWR | LFS_O_CREAT|
LFS_O_APPEND) ;

11
12 i f ( readFromBeginning ) {
13 l f s _ f i l e _ r e w i n d ( l f s , & f i l e ) ;
14 f i l e P o s = 0 ;
15 } else { l f s _ f i l e _ s e e k ( l f s , &f i l e , f i l e P o s ,LFS_SEEK_SET) ; }
16
17 f i l e S i z e = l f s _ f i l e _ s i z e ( l f s , & f i l e ) ;
18 f i l e P o s = l f s _ f i l e _ t e l l ( l f s , & f i l e ) ;
19 f i l e S i z e = f i l e S i z e − f i l e P o s ;
20 while ( f i l e S i z e >0){
21 i f ( f i l e S i z e > nofBytes ) {
22 i f ( l f s _ f i l e _ r e a d ( l f s , &f i l e , buf , nofBytes ) < 0) {return

ERR_FAILED; }
23 } else {
24 i f ( l f s _ f i l e _ r e a d ( l f s , &f i l e , buf , f i l e S i z e ) < 0) {return

ERR_FAILED; }
25 i f ( ! ( memory_erase ( (STARTADDRESS_IMAGE+f i l e P o s ) , 512) ) ) {
26 memory_write ( (STARTADDRESS_IMAGE+f i l e P o s ) , buf , 512) ;
27 } else {return ERR_FAILED; }
28
29 r e s u l t = l f s _ f i l e _ c l o s e ( l f s , & f i l e ) ;
30 i f ( r e s u l t < 0) {return ERR_FAILED; }
31 return ERR_OK; //EOF
32 }
33 i f ( ! ( memory_erase ( (STARTADDRESS_IMAGE+f i l e P o s ) , 512) ) ) {
34 memory_write ( (STARTADDRESS_IMAGE+f i l e P o s ) , buf , 512) ;
35 }
36 else {return ERR_FAILED; }
37
38 f i l e P o s = f i l e P o s + nofBytes ;
39 bzero ( buf , nofBytes ) ;
40 f i l e P o s = l f s _ f i l e _ t e l l ( l f s , & f i l e ) ;
41 f i l e S i z e = f i l e S i z e − nofBytes ;
42 }
43 }

Listing 6.28: Flashing files to internal flash.

100



CHAPTER 6. SOFTWARE DESIGN

If the internal flashing is done, the bootloader is ready to load the new application.
This is done with the function call load_new_Application() shown in 6.29. As argument
(addr) the start address has to be passed. This is the address the LoRa application
is flashed to. In the next chapter 6.3.4 an overview about the whole system and the
demonstrator node memory map is presented.

1 void load_new_Application ( uint32_t addr )
2 {
3 #i f McuLib_CONFIG_SDK_USE_FREERTOS
4 portDISABLE_ALL_INTERRUPTS( ) ; /∗ d i s a b l e a l l i n t e r r u p t s , they g e t

enab led in v S t a r t S c h e d u l e r ( ) ∗/
5 vPortStopTickTimer ( ) ; /∗ t i c k t imer s h a l l not run u n t i l the RTOS

s c h e d u l e r i s s t a r t e d ∗/
6 vTaskSuspendAll ( ) ;
7 #e n d i f
8
9 uint32_t ∗ vectorTable = ( uint32_t ∗) addr ;

10 uint32_t sp = vectorTable [ 0 ] ;
11 uint32_t pc = vectorTable [ 1 ] ;
12
13 typedef void (∗ app_entry_t ) ( void ) ;
14 uint32_t ss_stackPointer = 0 ;
15 uint32_t ss_app l i cat ionEntry = 0 ;
16 app_entry_t s s_app l i c a t i on = 0 ;
17
18 ss_stackPo inter = sp ;
19 s s_appl i cat ionEntry = pc ;
20 s s_app l i c a t i on = ( app_entry_t ) s s_app l i cat ionEntry ;
21
22 // Change MSP and PSP
23 __set_MSP( ss_stackPo inter ) ;
24 __set_PSP( ss_stackPointer ) ;
25 SCB−>VTOR = addr ;
26
27 // Jump to a p p l i c a t i o n
28 s s_app l i c a t i on ( ) ;
29 }

Listing 6.29: Bootloader boot application function.
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6.3.4. System overview

The presented implementation (chapter 6) of the server software and microcontroller
firmware builds the full stack of the FUOTA infrastructure used in this thesis. Figure
6.20 gives a concluding overview of the system design developed in this work. On the
node, a dual application architecture with the bootloader and the LoRaWAN application
was built. For the FUOTA image handling, an external flash is included in the archi-
tecture. On this flash, six files named backup.bin, newFW.bin, actFW.bin, patch.bin,
Boot_conf.ini and FW_conf.ini will allow a secure bootloader process. The memory
map of the demonstrator node is presented in figure 6.21.
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Figure 6.20.: System design of presented work.
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Figure 6.21.: Actual memory map of the demonstrator node.
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7. System tests

In this chapter, the developed infrastructure that was presented in the previous chapters
will be tested. For the tests, the system will be divides into units which first will be
tested separately to then be combined for system-wide integration tests.

7.1. Bootloader

For the bootloader, first the external memory will be tested and then the merge process
of the patch file to an actual image on the basis of a hello_world example application.
The new created firmware image has to be flashed to the application sector in the internal
flash and needs to be booted.

7.1.1. External flash

To test the external flash, a benchmark for writing, reading and copying files on the
flash is run. To interact with the flash from extern via the microcontroller a basic shell
application [66] on the demonstrator node is running, which is able to communicate via
the debug probe and a SEGGER RTT interface with the host machine running a serial
terminal (figure 7.1). With the command shown in code listing 7.1 the benchmark can
be run. In figure 7.2 the results of the benchmark are plotted. At the time of testing the
SPI clock frequency was set to 12MHz. The W25Q flash chip can be run up to 104MHz.
This means that, if faster data rates are required, the SPI clock has to be attached to a
higher clock. The LPC55S16 has the possibility to work up to 150MHz.

Figure 7.1.: Segger RTT communication [57].
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Figure 7.2.: W25Q benchmark results.

1 >McuLittleFS format
2 Formatting . . . done .
3
4 >McuLittleFS mount
5 Mounting . . . done .
6
7 >McuLittleFS s t a t u s
8 McuLittleFS : McuLittleFS s t a t u s
9 v e r s i o n : 0 x00020005

10 mounted : yes
11 space : 67108864 bytes
12 read_s ize : 256
13 prog_size : 256
14 b lock_s i ze : 4096
15 block_count: 16384
16 lookahead : 256
17
18 >McuLittleFS benchmark
19 Benchmark: wr i t e /copy/ read a 100kB f i l e :
20 Delete e x i s t i n g benchmark f i l e s . . .
21 ERROR: Fa i l ed removing f i l e .
22 ERROR: Fa i l ed removing f i l e .
23 Create benchmark f i l e . . .
24 13000 ms f o r wr i t i ng (7 kB/ s )
25 Read 100kB benchmark f i l e . . .
26 5000 ms f o r read ing (20 kB/ s )
27 Copy 100kB f i l e . . .
28 15000 ms f o r copy (6 kB/ s )
29 done !

Listing 7.1: Shell commands W25Q benchmark.

105



CHAPTER 7. SYSTEM TESTS

7.1.2. Merging patch & actual image

To test the algorithm [33] for merging the patch file to an existing firmware image,
without having a LoRaWAN communication channel, the data has to be transmitted
from a host machine over a UART interface (figure 7.3). To send the files from the host
directly into the flash, a Python script (code listing 7.2) is sending the file in 32byte
packages to the shell interface on the demonstrator node. With this setup, a file named
actFW.bin, which is a basic hello_wolrd example (code listing 7.3) is stored to the
external flash on the demonstrator node. On the host, a patch file with the JDiff library
[34] was generated. The patch file is the calculated difference between the actFW.bin
(code listing 7.3, 9180 bytes) and the newFW.bin (code listing 7.3 with the uncommented
lines included, this means the firmware flashes a LED every time a character is arrived
at the UART interface) with the size of 9320 bytes. The generated patch.bin file has the
size of 1501 bytes.
With the patch.bin and actFW.bin stored in the external flash, the bootloader is ready
to merge the patch.bin and the actFW.bin to the newFW.bin and stores the newFW.bin
in the external Flash. The newFW.bin file was then print via the SHELL to the RTT
terminal in HEX format. This output was then compared with the newFW.bin file on
the host machine, with the result of zero differences. This means the merge process on
the demonstrator node for the hello_world firmware example worked.

Serial to USB
adapter

Patch file

HostNode UART USB

Figure 7.3.: Serial to USB interface.
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30 par s e r = argparse . ArgumentParser ( )
31 par s e r . add_argument ( "FILE" , help="the name of the file that you wish to

dump" , type=str )
32 par s e r . add_argument ( "FILE_NAME" , help="name which the file will be saved on

thedevice" , type=str )
33 par s e r . add_argument ( "-b" , "--binary" , help="display bytes in binary format

instead of hexadecimal" , a c t i on="store_true" )
34 args = par s e r . parse_args ( )
35 myRawData = [ ]
36 s e r i a l P o r t = s e r i a l . S e r i a l ( port = "COM31" , baudrate =115200 , b y t e s i z e =8,

timeout =2, s t o p b i t s=s e r i a l .STOPBITS_ONE)
37
38 mcLib_bincat_string = "McuLittleFS bincat " + args .FILE_NAME + " "
39
40 waitTime = 1 .4
41 n = 0
42 y = 0
43 b l o c k s i z e = 32
44 binary16_str ing_2 = ""
45 msg_16byte = ""
46
47 f i l e = open( args . FILE , "rb" )
48 binary_block = f i l e . read ( b l o c k s i z e )
49
50 while binary_block :
51 n += 1
52 y += 1
53 str = ""
54 hex_str = ""
55 for ch in binary_block :
56
57 tmp = hex( ch ) [ 2 : ] . z f i l l ( 2 ) + " "
58 str += f ’{ch}’ + " "
59 hex_str += tmp
60 binary16_str ing = str
61
62 print ( hex_str )
63 print ( "\r\n" )
64 msg = mcLib_bincat_string + binary16_str ing + "\r\n"
65 time . s l e e p ( waitTime /2)
66 s e r i a l P o r t . wr i t e (msg . encode ( ’utf -8’ ) )
67 s e r i a l P o r t . f l u s h ( )
68 binary_block = f i l e . read ( b l o c k s i z e )
69 time . s l e e p ( waitTime /2)
70
71 print ( "\n\nFINISED\n\n\n\n" )
72 s e r i a l P o r t . c l o s e ( )

Listing 7.2: Serial file transfer script.
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1 int main ( void )
2 {
3 char ch ;
4 /∗ I n i t output LED GPIO. ∗/
5 //GPIO_PortInit (GPIO, BOARD_LED_PORT) ;
6
7 /∗ I n i t board hardware . ∗/
8 POWER_SetBodVbatLevel (kPOWER_BodVbatLevel1650mv ,

kPOWER_BodHystLevel50mv , f a l s e ) ;
9 CLOCK_AttachClk(BOARD_DEBUG_UART_CLK_ATTACH) ;

10 BOARD_InitBootPins ( ) ;
11 BOARD_InitBootClocks ( ) ;
12 BOARD_InitDebugConsole ( ) ;
13
14 PRINTF( "hello world.\r\n" ) ;
15 //PRINTF(" This i s the new Version .\ r \n ") ;
16 //PRINTF(" B l inks LED a f t e r UART input . \ r \n ") ;
17 while (1 )
18 {
19 ch = GETCHAR( ) ;
20 PUTCHAR( ch ) ;
21 //GPIO_PortToggle (GPIO, BOARD_LED_PORT, 1u << BOARD_LED_PIN) ;
22 }
23 }

Listing 7.3: Basic hello_world firmware example.
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7.2. LoRaWAN

To test the LoRaWAN communication, a basic periodic uplink application will be in-
stalled on the node. On server side the node has to be added to the application server
with the same keys, as on the node in the se-identity.h file. On power up, the demon-
strator node application will send a join request to the server and if it receives a join
accept message, the application will send actual temperature and humidity values, each
as a 4byte value periodically up to the server.
In code listing 7.4 the log of the demonstrator node is shown. In figure 7.7 the log on
the application server is presented. For this test the demonstrator node and the Lo-
RaWAN gateway were placed 2m apart from each other with no obstacle in between.
Further analysis of the provided meta information about the received LoRa messages by
the server has shown, that the signal strength, represented in the RSSI value, is very
weak. The Received Signal Strength Indication (RSSI) is the received signal power in
milliwatts and is measured in dBm.
To have a better understanding of the problem, a LPC55S16-EVK will be used with
a SX1261MB2BAS shield (5.2) as a second node and the demonstrator node will be
compared to this shield, which is using a SX1261 LoRa chip from Semtech. The test
setup is shown in figure 7.4. Figure 7.5 shows the signal strength of the two nodes for
the exact same setup. It can be seen that the SX1261MB2BAS shield has a significantly
better signal strength. Further in 7.6 the SNR (signal to noise ration) for the same
measurement is shown. From this it can be concluded, that the RFM96 module with
the SX1276 LoRa chip assembled, has a problem with its power setting. The reason for
this could be a wrong firmware configuration or a poor hardware layout and antenna
setting. Due to time constraints, and the fact that the demonstrator node works for the
basic setup, the problem with the signal strength must be further investigated after this
work is completed.
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Figure 7.4.: RSSI test setup.
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Figure 7.5.: RSSI comparison.

Figure 7.6.: SNR comparison.
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Figure 7.7.: Basic Chirpstack LoRaWAN message log.
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1 ###### ===================================== ######
2
3 Appl i ca t ion name : pe r i od i c −upl ink−lpp
4 Appl i ca t ion v e r s i o n : 1 . 2 . 0
5 GitHub base v e r s i o n : 5 . 0 . 0
6
7 ###### ===================================== ######
8
9 ###### Board UUID: {0x16 ,0xCD,0xBA,0xFB,0xEC,0 x16 ,0xDF,0 x5B ,0 xA4 ,0 xA2 ,0

xFA,0 xF1 ,0 xD5 ,0 xB4 ,0 x59 ,0xEF} ######
10
11 13 .06 . 2022 16 : 24 : 47 , 00 INFO LoRaWAN. c : 9 3 7 : Mounting l i t t e F S volume .
12 Mounting . . . done .
13 13 .06 . 2022 16 : 24 : 47 , 60 INFO a p p l i c a t i o n . c : 6 8 : App Task s t a r t e d .
14 13 .06 . 2022 16 : 24 : 49 , 10 INFO LoRaWAN. c : 1 0 5 0 : s t a r t j o i n i n g . . .
15 13 .06 . 2022 16 : 25 : 00 , 90 INFO LmHandlerMsgDisplay . c : 3 2 8 : CLASS: A, TX PORT 0
16
17 ###### ========== MCPS−I n d i c a t i o n ========== ######
18 STATUS : OK
19
20 ###### ===== DOWNLINK FRAME 0 ===== ######
21 RX WINDOW : 1
22 RX PORT : 0
23
24 DATA RATE : DR_0
25 RX RSSI : −41
26 RX SNR : 8
27
28 13 .06 . 2022 16 : 25 : 03 , 20 INFO LoRaWAN. c : 1 0 6 1 : . . . connected
29 13 .06 . 2022 16 : 25 : 03 , 20 INFO LoRaWAN. c : 1 0 8 5 : r eque s t to tx data
30 13 .06 . 2022 16 : 25 : 14 , 20 INFO LmHandlerMsgDisplay . c : 3 2 8 : CLASS: A, TX PORT 2
31 00 00 0B 97 00 00 10 17
32 13 .06 . 2022 16 : 25 : 22 , 70 INFO LmHandlerMsgDisplay . c : 3 2 8 : CLASS: A, TX PORT 2
33 00 00 0B 9A 00 00 10 0E
34 13 .06 . 2022 16 : 25 : 29 , 80 INFO LmHandlerMsgDisplay . c : 3 2 8 : CLASS: A, TX PORT 2
35 00 00 0B 9A 00 00 10 0E
36 13 .06 . 2022 16 : 25 : 36 , 90 INFO LmHandlerMsgDisplay . c : 3 2 8 : CLASS: A, TX PORT 2
37 00 00 0B 9E 00 00 10 05
38 13 .06 . 2022 16 : 25 : 44 , 00 INFO LmHandlerMsgDisplay . c : 3 2 8 : CLASS: A, TX PORT 2
39 00 00 0B 9D 00 00 0F FA
40 13 .06 . 2022 16 : 25 : 51 , 10 INFO LmHandlerMsgDisplay . c : 3 2 8 : CLASS: A, TX PORT 2
41 00 00 0B 9F 00 00 0F FF

Listing 7.4: Demonstrator node log information for basic LoRaWAN application.
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7.3. FUOTA

For the FUOTA application on both, the server side and the demonstrator node side
following tests were run.

7.3.1. FUOTA server and demonstrator tests

To test the FUOTA server and the demonstrator node application a test setup as de-
scribed in the following section was developed. The presented logs are shortened, because
to show them full they would take to many pages into account. The original logs and
test data can be found in the appendix.
To test the FUOTA session setup, the following files where generated:

• V1.bin
The firmware binary V1.bin is the demonstrator node firmware running at address
0x19000 on the node and which is sending periodically just the temperature value
to the LoRaWAN network.

• V2.bin
The firmware binary V2.bin is the demonstrator node firmware, which is sending
periodically both the temperature and humidity value to the LoRaWAN network.
This binary is built but not flashed to the demonstrator node. The only sourcecode
change is shown in code listing 7.5.

1 readSensorSHT31(&tmp , &hum) ;
2 tmpInt = ( uint32_t ) (tmp∗100) ;
3 /∗
4 ∗##################################################
5 ∗ This i s the source code change from ver s i on 1 to ve r i son 2
6 ∗##################################################
7 ∗/
8 humInt = ( uint32_t ) (hum∗100) ;
9 //humInt = ( uint32_t ) (0) ;

10
11 uint8_t appdata [ 8 ] ;
12 appdata [ 3 ] = tmpInt & 0x000000FF ;
13 appdata [ 2 ] = ( tmpInt >> 8 ) & 0x000000FF ;
14 appdata [ 1 ] = ( tmpInt >> 16 ) & 0x000000FF ;
15 appdata [ 0 ] = ( tmpInt >> 24 ) & 0x000000FF ;
16 appdata [ 7 ] = humInt & 0x000000FF ;
17 appdata [ 6 ] = ( humInt >> 8 ) & 0x000000FF ;
18 appdata [ 5 ] = ( humInt >> 16 ) & 0x000000FF ;
19 appdata [ 4 ] = ( humInt >> 24 ) & 0x000000FF ;

Listing 7.5: Sourcecode change from V1 to version V2.
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• lora_diff.bin
This is the patch binary built with the jDiff library [34]. Following command
generates the patch:

1 > j d i f f . exe V1 . bin V2 . bin l o r a _ d i f f . bin

The patch file has the size of 14’477 Bytes.

• lora_patch_frag_218_20.txt
With the following command the patch file is divided in fragments of size 218bytes
and twenty redundancy fragments were added.

1 >lorawan−fota −s i gn ing −t o o l c reate −f rag −packets − i l o r a _ d i f f .
bin −−output−format p l a i n −−f rag −s i z e 218 −−redundancy−
packets 20 −o lora_patch_frag_218_20 . txt

With this setup the FUOTA session setup is tested. On the node the bootloader is
already running as the log 7.6 shows. To start the FUOTA application the button 2 on
the node has to be pressed to tell the bootloader to load the actual stored application
in the flash.

1 1 3 : 2 2 : 3 3 : Boot loader s t a r t e d
2
3 Mounting l i t t e F S volume .
4
5 ###### =========== Boot Config Data ============ ######
6 Boot counter : 0
7 Booting new Image ? : 0
8 Patch s t a t e : 0
9 ac tua l FW Vers ion : 1 0 0 0

10 new FW Vers ion : 1 0 0 0
11 1 3 : 2 2 : 3 4 :
12
13
14 Ready for Button i n t e r a c t i o n .

Listing 7.6: FUOTA session setup demonstrator LOG 1.
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By pushing the BTN2 on the demonstrator node the actual firmware is booted. There
the node connects to the LoRaWAN network and is sending the temperature value
periodically (log output 7.7).

1
2 1 3 : 2 2 : 4 5 : User Up pres sed .
3 −−−−−−> −−−−−−> −−−−−−>
4 No Boot f l a g
5 act IMAGE boots
6 −−−−−−> −−−−−−> −−−−−−>
7 1 3 : 2 2 : 4 9 :
8 ###### ===================================== ######
9 Appl i ca t ion name : pe r i od i c −upl ink−lpp

10 Appl i ca t ion v e r s i o n : 1 . 2 . 0
11 GitHub base v e r s i o n : 5 . 0 . 0
12 ###### ===================================== ######
13 Mounting l i t t e F S volume .LORA APP Started .
14 1 3 : 2 2 : 5 2 : s t a r t j o i n i n g . . .
15 1 3 : 2 3 : 0 0 :
16
17 JOINED (OTAA) , DevAddr : 1B3B20F , DATA RATE: DR_0
18 1 3 : 2 3 : 0 4 :
19 ###### ========== MCPS−I n d i c a t i o n ========== ######
20 STATUS : OK
21 ###### ===== DOWNLINK FRAME 0 ===== ######
22 RX WINDOW : 1
23 RX PORT : 0
24
25 1 3 : 2 3 : 0 6 : . . . connectedreques t to tx data
26 1 3 : 2 3 : 1 3 :
27 ###### =========== SENSOR DATA ============ ######
28 ###### ===================================== ######
29 Temperature : 28 \xB0
30 Humidity : 42 RH
31
32 1 3 : 2 3 : 1 7 :
33 MCPS−Confirm : OK
34 UPLINK FRAME: 2
35 CLASS: A, TX PORT 2
36 Payload : 0 0 B 33 0 0 0 0
37
38 1 3 : 2 3 : 2 2 :
39 ###### =========== SENSOR DATA ============ ######
40 ###### ===================================== ######
41 Temperature : 28 \xB0
42 Humidity : 42 RH
43
44 MCPS−Confirm : OK
45 UPLINK FRAME: 3
46 CLASS: A, TX PORT 2
47 Payload : 0 0 B 33 0 0 0 0

Listing 7.7: FUOTA session setup demonstrator node LOG 2.
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While the basic FUOTA application is sending senosor data, the FUOTA server is ready
to start setting up the FUOTA session. By the following command, the FUOTA server
starts and calculates the meta data for the FUOTA session (shown in log outout 7.8).

1 node prepareFuota . j s lora_patch_frag_218_20 . txt Images/ l o r a _ d i f f . bin
Images/V2 . bin 01020305

1 NR Fragments 87 Type number
2
3 Patch binary S i z e 14477 Type number
4
5 Patch fragment s i z e 218 Type number
6
7 Patch HASH 8

c88814fc5ec6bde8f96c930c47b705dc6847b52946a6b4d33a358bee7fcd6ed
Type s t r i n g

8
9 New binary HASH 2

e0ae35326bd71eb f70c7c08750e6 f f f 843e17 fa01383864 f39e369b576e fcd1
Type s t r i n g

10
11
12 MQTT c l i e n t connected !
13 Subscr ibed to a l l a p p l i c a t i o n events

Listing 7.8: FUOTA session setup server LOG 1.

After the metadata are calculated the server first runs the clock synchronization on
the demonstrator node and the sets up the multicast and fragmented data session as
presented in the communication flow diagram in figure 6.5. The shorted session set up
log of the node is shown in listing 7.10 and the one from the server in 7.9.

1 Port144 msg i s be ing sent :
2 pub l i sh ing as 2 3333333333333333 f o l l o w i n g msg { conf irmed : false ,
3 fPort : 144 ,
4 data :
5 ’jTgAAQIDBQHaVwCMiIFPxexr3o+WyTDEe3BdxoR7UpRqa00zo1i +5/ zW7Q==’ }
6 −−−−−−−−−−−−−−−−−−>>>>>>>>>>>>>>>>>>>>>>>>>
7 EUI 3333333333333333 fPort 144 payload Buf f e r <Buf f e r f f >
8 <<<<<<<<<<<<<<<<<<<<<<−−−−−−−−−−−−−−−−−−−−−
9

10 New Bin HASH 3333333333333333 2
e0ae35326bd71eb f70c7c08750e6 f f f 843e17 fa01383864 f39e369b576e fcd1 seconds

11 pub l i sh ing as 2 3333333333333333 f o l l o w i n g msg { conf irmed : false ,
12 fPort : 145 ,
13 data : ’LgrjUya9cev3DHwIdQ5v /4Q+F/oBODhk8542m1du/NE=’ }
14
15 −−−−−−−−−−−−−−−−−−>>>>>>>>>>>>>>>>>>>>>>>>>
16 EUI 3333333333333333 fPort 145 payload Buf f e r <Buf f e r f f >
17 <<<<<<<<<<<<<<<<<<<<<<−−−−−−−−−−−−−−−−−−−−−
18 Al l dev i c e ready for setup . . .
19
20 −−−−−−−−−−−−−−−−−−>>>>>>>>>>>>>>>>>>>>>>>>>
21 EUI 3333333333333333 fPort 202 payload Buf f e r <Buf f e r 01 06 84 d4 4 f 00>
22 <<<<<<<<<<<<<<<<<<<<<<−−−−−−−−−−−−−−−−−−−−−
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23 ##################################################################
24 deviceTime 1339327494 serverTime 1339327476
25 deviceTime 1 0 : 2 4 : 5 4 serverTime 1 0 : 2 4 : 3 6
26 Adjust time in Seconds −18
27 ##################################################################
28 Clock sync for dev i ce 3333333333333333 −18 seconds
29 Al l d e v i c e s have had t h e i r c l o c k s synced , s e t t i n g up mc group . . .
30
31 pub l i sh ing as 2 3333333333333333 f o l l o w i n g msg { conf irmed : false , fPort :

202 , data : ’Ae7 ///8A’ }
32 sendMcGroupSetup
33
34 pub l i sh ing as 2 3333333333333333 f o l l o w i n g msg { conf irmed : false ,
35 fPort : 200 ,
36 data : ’AgD ///8 BWC07g+rVGHByGYMrOQk96QAAAAD //wAA’ }
37
38 −−−−−−−−−−−−−−−−−−>>>>>>>>>>>>>>>>>>>>>>>>>
39 EUI 3333333333333333 fPort 200 payload Buf f e r <Buf f e r 02 00>
40 <<<<<<<<<<<<<<<<<<<<<<−−−−−−−−−−−−−−−−−−−−−
41
42 Al l d e v i c e s have r e c e i v e d mu l t i c a s t group , s e t t i n g up f r a g s e s s i o n . . .
43 sendFragSess ionSetup
44 pub l i sh ing as 2 3333333333333333 f o l l o w i n g msg { conf irmed : false , fPort :

201 , data : ’AgBDANoAgQAAAAA=’ }
45
46 Al l d e v i c e s have r e c e i v e d f r a g s e s s i o n , sending mc s t a r t msg . . .
47 sendMcClassCSessionReq
48 pub l i sh ing as 2 3333333333333333 f o l l o w i n g msg { conf irmed : false , fPort :

200 , data : ’BABIhNRP /526 hAU=’ }
49
50 −−−−−−−−−−−−−−−−−−>>>>>>>>>>>>>>>>>>>>>>>>>
51 EUI 3333333333333333 fPort 200 payload Buf f e r <Buf f e r 04 00 35 00 00>
52 <<<<<<<<<<<<<<<<<<<<<<−−−−−−−−−−−−−−−−−−−−−
53 ####################################################################
54 3333333333333333 time to s t a r t 53 startTime i s 1339327560 currt ime i s

1339327514
55 3333333333333333 time to s t a r t 0 0 : 0 0 : 5 3 startTime i s 1 0 : 2 6 : 0 0 currt ime i s

1 0 : 2 5 : 1 4
56 startSendingClassCPackets
57 Al l dev i c e ready ? { ’3333333333333333 ’ :
58 { clockSynced : true ,
59 f ragSes s ionAns : true ,
60 mcSetupAns : true ,
61 mcStartAns : true ,
62 app l i ca t i on ID : ’2’ ,
63 msgWaiting : nu l l ,
64 ready : true } }

Listing 7.9: FUOTA session setup server LOG 2.
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1
2 ###### ===== DOWNLINK FRAME 0 ===== ######
3 RX WINDOW : 1
4 RX PORT : 144
5 RX DATA :
6 8D 38 0 1 2 3 5 1 DA 57 0 8C 88 81 4F C5
7 EC 6B DE 8F 96 C9 30 C4 7B 70 5D C6 84 7B 52 94
8 6A 6B 4D 33 A3 58 BE E7 FC D6 ED
9 1 3 : 2 4 : 0 6 :

10 ###### =========== Firmware Metadata ============ ######
11 Patch S i z e : 14477
12 Fragment S i z e : 218
13 FW Vers ion : 1 2 3 5
14 patch Hash : 8C 88 81 4F C5 EC 6B DE 8F 96 C9 30 C4 7B 70 5D
15 C6 84 7B 52 94 6A 6B 4D 33 A3 58 BE E7 FC D6 ED
16
17 1 3 : 2 4 : 1 1 :
18 MCPS−Confirm : OK
19 UPLINK FRAME: 9
20 CLASS: A, TX PORT 144
21 Payload : FF
22 ###### ===== DOWNLINK FRAME 1 ===== ######
23 RX WINDOW : 1
24 RX PORT : 145
25 RX DATA :
26 2E A E3 53 26 BD 71 EB F7 C 7C 8 75 E 6F FF
27 84 3E 17 FA 1 38 38 64 F3 9E 36 9B 57 6E FC D1
28 DATA RATE : DR_0
29 RX RSSI : 4294967276
30 RX SNR : 7
31 ###### =========== Firmware Metadata ============ ######
32 new firmware v e r s i o n Hash : 2E A E3 53 26 BD 71 EB F7 C 7C 8 75 E 6F

FF
33 84 3E 17 FA 1 38 38 64 F3 9E 36 9B 57 6E FC D1
34
35 1 3 : 2 4 : 1 4 :
36 MCPS−Confirm : OK
37 UPLINK FRAME: 10
38 CLASS: A, TX PORT 145
39 Payload : FF
40
41 MCPS−Confirm : OK
42 UPLINK FRAME: 11
43 CLASS: A, TX PORT 202
44 Payload : 1 6 84 D4 4F 0
45 ###### ===== DOWNLINK FRAME 2 ===== ######
46 RX WINDOW : 1
47 RX PORT : 202
48 RX DATA : 1 EE FF FF FF 0
49
50 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
51 TIME SYNC OK ! ! ! ! ! ! !
52 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
53
54
55 ###### ===== DOWNLINK FRAME 3 ===== ######
56 RX WINDOW : 1
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57 RX PORT : 200
58 RX DATA :
59 2 0 FF FF FF 1 58 2D 3B 83 EA D5 18 70 72 19
60 83 2B 39 9 3D E9 0 0 0 0 FF FF 0 0
61
62 ID : 0
63 McAddr : 1FFFFFF
64 McKey : 58−2D−3B−83−EA−D5−18−70−72−19−83−2B−39− 9−3D−E9
65 McFCountMin : 0
66 McFCountMax : 65535
67 SessionTime : 0
68 SessionTimeT : 0
69 Rx Freq : 0
70 Rx DR : DR_0
71 1 3 : 2 4 : 3 0 :
72
73 MCPS−Confirm : OK
74 UPLINK FRAME: 13
75 CLASS: A, TX PORT 200
76 Payload : 2 0
77 ###### ===== DOWNLINK FRAME 4 ===== ######
78 RX WINDOW : 1
79 RX PORT : 201
80 RX DATA : 2 0 43 0 DA 0 81 0 0 0 0
81
82 1 3 : 2 4 : 4 3 :
83 MCPS−Confirm : OK
84 UPLINK FRAME: 15
85 CLASS: A, TX PORT 201
86 Payload : 2 0
87 ###### ===== DOWNLINK FRAME 5 ===== ######
88 RX WINDOW : 1
89 RX PORT : 200
90 RX DATA : 4 0 48 84 D4 4F FF 9D BA 84 5
91
92 Time2Sess ionStart : 53000 ms
93 ID : 0
94 McAddr : 1FFFFFF
95 McKey : 58−2D−3B−83−EA−D5−18−70−72−19−83−2B−39− 9−3D−E9
96 McFCountMin : 0
97 McFCountMax : 65535
98 SessionTime : 1655292360
99 SessionTimeT : 15

100 Rx Freq : 869852500
101 Rx DR : DR_5
102 1 3 : 2 4 : 5 8 :
103
104 DATA RATE: DR_0, TX POWER: 0
105 U/L FREQ: 867900000
106 1 3 : 2 5 : 4 7 :
107 ###### ===== Switch to Class C done . ===== ######
108 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
109 OnClassChange
110 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
111
112 1 3 : 2 7 : 5 8 :
113 MCPS−Confirm : OK

120



CHAPTER 7. SYSTEM TESTS

114 UPLINK FRAME: 24
115 CLASS: C, TX PORT 0
116 Payload :
117 ###### ========== MCPS−I n d i c a t i o n ========== ######
118 STATUS : OK

Listing 7.10: FUOTA session setup demonstrator node LOG 1.

If the setup worked as planed on both sides, the fragments should have been sent over
the virtual multicast device in the Chirpstack application as a multicast downlink to the
demonstrator node. The problem was that these messages where never sent. A deeper
analysis has shown, that the fragments where sent from the JavaScript FUOTA server via
MQTT to the Chirpstack application server, but the application server rejected these
messages. Different information sources [25][24] have shown, that multicast downlink
can not be sent via the MQTT protocol. To be able to send multicast downlinks, the
Chirpstack Python SDK using gRPC 1 and the Chirpstack API have to be used. This
had the consequence, that for the multicast downlink messages, another Python FUOTA
server had to be implemented, which can send the fragments to the demonstrator node.
The change in the system design is shown in figure 7.8. The main part of the Python
FUTOA server is shown in code listing 7.11.

New FW

ChirpStack server

Python gRPC multicast
messageing

FUOTA Server

JavaScript FUOTA
device setup

Patch-file Generator

Old FW

MQTT

HTTP2

Figure 7.8.: Two-stage FUOTA server.

This second stage Pyhton server has to be called with following command:
1 python3 test−python . py . . / test−fuota−s e r v e r / test−fuota−s e r v e r /

lora_patch_frag_218_20 . txt

At the moment of testing, this command has to be started manually after the devices
have switched to class C. For future work, this hast to be automated and the two server
have to be combined.

1"gRPC is a modern open source high performance Remote Procedure Call (RPC) framework that can
run in any environment."[29]
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1 # Conf i gura t ion .
2 # This must po in t to the API i n t e r f a c e .
3 s e r v e r = "localhost :8080"
4 # The API token ( r e t r i e v e d us ing the web−i n t e r f a c e ) .
5 api_token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
6 eyJhcGlfa2V5X2lkIjoiZTUyZDE3MzUtZTZiO
7 C00MmRiLWE1ODgtNTIxOWVjMmU1NTcyIiwiYX
8 VkIjoiYXMiLCJpc3MiOiJhcyIsIm5iZiI6MTY
9 1NDExNTM0Miwic3ViIjoiYXBpX2tleSJ9.OMt

10 nV2yJECFRd9QqrD0a4Fm5xKElFJVUhPhbLozyEN4"
11
12 i f __name__ == "__main__" :
13 # Connect w i thou t us ing TLS.
14 channel = grpc . insecure_channe l ( s e r v e r )
15
16 # Device−queue API c l i e n t .
17 c l i e n t = api . DeviceQueueServiceStub ( channel )
18 m u l t i c a s t c l i e n t = api . Mult icastGroupServiceStub ( channel )
19
20 # Define the API key meta−data .
21 auth_token = [ ( "authorization" , "Bearer %s" % api_token ) ]
22
23 # Construct r e q u e s t .
24 counter = 15
25 for l i n e in Lines [ 1 : ] :
26 counter = counter + 1
27 byte_st r ings = l i n e . s p l i t ( )
28 byte_arrays = [ int ( byte_str ing , 16) for byte_str ing in byte_str ings

]
29 reqMult i = api . EnqueueMulticastQueueItemRequest ( )
30 reqMult i . multicast_queue_item . multicast_group_id = "

ec3c22c436fb4652beb288e294adf880"
31 reqMult i . multicast_queue_item . data = bytes ( byte_arrays )
32 reqMult i . multicast_queue_item . f_cnt = counter
33 reqMult i . multicast_queue_item . f_port = 201
34 respMuti = m u l t i c a s t c l i e n t . Enqueue ( reqMulti , metadata=auth_token )
35 print ( respMuti )
36 print ( [ f "{hex(b)}" for b in byte_arrays ] , end="" )
37 print ( "" )
38 time . s l e e p ( 2 . 5 )

Listing 7.11: Python FUOTA server.
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7.4. Multicast-Fragments handling

After the new server was implemented, the test was run again. The same test setup
as in the previous tests where used. Additionally, an OttiARC power-analyser [55] is
plugged to the RFM96 power supply, to measure the used power of the module during
the FUOTA session. Further, the logs presented, will not include the session setup which
is already presented in previous test. In the log 7.12 it can be seen, that the fragments
were received by the node. At the end 2 fragments were lost and the node needed in
total 69 fragments to rebuild the patch file. This is in total a size of 15042bytes sent as
multicast downlink messages. At the end the demonstrator node switches back to the
class A and confirms the correct received patch by sending back the calculated HASH
of the patch file, which is identical with the one calculated by the FUOTA server.
Figure 7.9 shows the power consumption of the RFM96 node during the FUOTA session
setup and the received multicast fragments. The RFM96 module needs approximately
40mW for receiving and transmitting the data. However it must be kept in mind, that
this value is not the radio power, but the power the whole module needs. From the
power log the different parts in the FUOTA session can be extracted.

1. Part one is fits to the joining process.

2. Part two is the periodical uplink with the sensor data.

3. Part three is the FUOTA sessions set up.

4. In part four the node switched to class C and waits for the multicast fragments.
This took more time than expected since, the logfiles had to be saved on the host
machine and the Python server was then manually started.

5. In part five the multicast fragments were received.

6. At the end in part six, the HSAH of the patch file was transmitted to the server
to confirm a successful transmission.
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1 2 3 4 5 6

Power consumption of the RFM96 modul during a FUOTA session for a
15kByte patch file

Figure 7.9.: Power consumption of the RFM96 module during the FUOTA session.

1
2 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
3 OnClassChange
4 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
5
6
7 ###### ===== DOWNLINK FRAME 2530 ===== ######
8 RX WINDOW : C Mult i cas t
9 RX PORT : 201

10 RX DATA :
11 8 1 0 A7 A3 B A7 A6 1F A7 A3 2E A7 A4 7 A7
12 A6 27 E 3 A7 A3 38 A7 A6 15 ED 2 0 1D ED 2
13 0 29 D7 1 A7 A3 A8 A7 A5 75 EE 2 0 7D EE 2
14 0 A7 A6 4 71 A7 A3 9 A7 A6 4 71 A7 A3 9 A7
15 A6 4 71 A7 A3 F7 A7 A6 1A A7 A3 A A7 A6 B7 A7
16 A3 E A7 A6 AF A7 A3 16 A7 A6 56 A7 A3 8 A7 A6
17 CB A7 A3 8 A7 A6 F0 A7 A3 6 A7 A6 A FF 14 F0
18 A2 A7 A3 8 A7 A6 41 A7 A3 6 A7 A6 B7 A7 A3 8
19 A7 A6 DC F9 14 F0 92 A7 A3 FD 2 ED A7 A6 1D A7
20 A3 90 A7 A6 62 A7 A3 14 A7 A6 2D A7 A3 6 A7 A6
21 7B A7 A3 4 A7 A6 74 A7 A3 A A7 A6 20 A7 A3 22
22 A7 A6 88 A7 A3 44 A7 A6 CD A7 A3 12 A7 A6 E3 A7
23 A3 6 A7 A6 2F A7 A3 4 A7 A6 18 A7 A3 A A7 A6
24 D4 A7 A3 C A7 A6 85 A7 A3 FC 4A A7 A6
25
26 DATA RATE : DR_5
27 RX RSSI : 4294967276
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28 RX SNR : 7
29 ###### =========== FRAG_DECODER ============ ######
30 ###### PROGRESS ######
31 ###### ===================================== ######
32 RECEIVED : 1 / 67 Fragments
33 218 / 14606 Bytes
34 LOST : 0 Fragments
35
36 1 3 : 2 8 : 0 7 :
37 ###### ===== DOWNLINK FRAME 2533 ===== ######
38 RX WINDOW : C Mult i cas t
39 RX PORT : 201
40 RX DATA :
41 8 4 0 A7 A6 43 A7 A3 D6 A7 A6 59 A7 A3 C A7
42 A6 24 A7 A3 60 A7 A6 59 A7 A3 8 A7 A6 E0 A7 A3
43 E A7 A6 D8 A7 A3 28 A7 A6 33 A7 A3 50 A7 A6 A
44 A7 A3 1A A7 A6 FC A7 A3 C A7 A6 74 A7 A3 6 A7
45 A6 E7 41 3 0 6A 40 3 0 72 40 3 0 82 40 3
46 0 88 40 3 0 8E 40 3 0 99 A7 A3 26 A7 A6 D1
47 A7 A3 34 A7 A6 B6 A7 A3 1A A7 A6 A8 A7 A3 1A A7
48 A6 9A A7 A3 52 A7 A6 70 A7 A3 8 A7 A6 99 A7 A3
49 6 A7 A6 E7 41 3 0 A1 40 3 0 72 40 3 0 AB
50 40 3 0 B5 40 3 0 BE 40 3 0 C7 40 3 0 CF
51 40 3 0 D8 40 3 0 E2 A7 A3 E A7 A6 51 A7 A3
52 8 A7 A6 F8 A7 A3 8 A7 A6 D3 A7 A3 1A A7 A6 39
53 A7 A3 12 A7 A6 BB A7 A3 1A A7 A6 21 A7 A3 14 A7
54 A6 A2 A7 A3 18 A7 A6 9 A7 A3 8 A7 A6
55
56 DATA RATE : DR_5
57 RX RSSI : 4294967277
58 RX SNR : 8
59 ###### =========== FRAG_DECODER ============ ######
60 ###### PROGRESS ######
61 ###### ===================================== ######
62 RECEIVED : 4 / 67 Fragments
63 872 / 14606 Bytes
64 LOST : 2 Fragments
65
66 . . .
67 . . .
68 . . .
69
70 ###### =========== FRAG_DECODER ============ ######
71 ###### PROGRESS ######
72 ###### ===================================== ######
73 RECEIVED : 69 / 67 Fragments
74 15042 / 14606 Bytes
75 LOST : 2 Fragments
76
77 1 3 : 3 0 : 5 3 :
78 ###### ===== DOWNLINK FRAME 2599 ===== ######
79 RX WINDOW : C Mult i cas t
80 RX PORT : 201
81 RX DATA :
82 8 46 0 4A EC A9 99 7F 2B 2C 41 42 C 56 6B 2A
83 D0 DA 45 E4 8D 35 AD 6D A2 2F B8 E3 60 41 C9 1E
84 36 5B 8 97 94 36 87 49 6A 2D 64 F2 75 D6 5D 51
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85 B9 B6 62 AC D2 9C 7 8D 2B 95 A6 17 A1 7A F1 B1
86 D3 39 30 69 DE BF 88 F A7 A7 10 86 1F 52 BF 2B
87 E8 43 CA B6 A4 31 73 8 5B 2B D3 EE 2C 85 5B 23
88 1C EA 5E 1D B3 DB 2C C9 39 A8 ED 84 28 19 8B 38
89 DD AF 7 6 DA ED 49 92 30 10 9C 7D 4B A 59 1
90 C3 EA 62 DF 99 B4 54 96 63 C9 E5 B5 E9 24 54 2B
91 58 61 85 7F 49 2E 55 47 12 8B D7 18 ED 90 2D 71
92 82 E8 D9 9C 9F D0 7A 45 88 B4 2C 66 19 24 8E 2F
93 58 EB DC FE 9 82 47 4D FF 38 53 F4 76 66 8C E
94 52 BA 47 DA 76 EC 78 72 ED B1 E1 D1 CE A5 BD 12
95 20 AC 83 CD 21 80 18 C2 3A 52 ED 3A 27
96
97 DATA RATE : DR_5
98 RX RSSI : 4294967277
99 RX SNR : 7

100 ###### =========== FRAG_DECODER ============ ######
101 ###### FINISHED ######
102 ###### ===================================== ######
103 STATUS : 4294967294
104 CRC : 49999466
105
106 S i z e : 14477
107 ###### ===== Switch to Class A done . ===== ######
108 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
109 OnClassChange
110 −−−−−−−−−−−−−−−−><−−−−−−−−−−−−−−−−
111
112 1 3 : 3 1 : 0 9 :
113 MCPS−Confirm : OK
114 UPLINK FRAME: 27
115 CLASS: A, TX PORT 146
116 Payload : 8C 88 81 4F C5 EC 6B DE 8F 96 C9 30 C4 7B 70 5D
117 C6 84 7B 52 94 6A 6B 4D 33 A3 58 BE E7 FC D6 ED

Listing 7.12: Fragmented multicast downlinks LOG.
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7.5. Merge and boot process

For the merge and boot, the same setup is used as in previous test (section 7.3). The
part of the FUOTA session setup and transmission of the fragments over multicast will
not be presented again. The log 7.13 starts after all fragments were received and the
node has confirmed a successful transaction with the HASH of the patch file. The merge
process took approximately 100s. Interesting is that after 89% of the data are patched
the process jumped immediately to 100%. The flash process to the internal flash took
about 7s for the newFw.bin file which has a size of 120kByte. After the firmware file
is flashed, the bootloader tried to boot the new image but failed. No application was
running after the boot sequence. An analysis of the generated new firmware binary after
the patch process has shown, that from address 0x88C5 the file does not match with the
original firmware version V2. As the merge and boot process worked in a simpler setting
with a different file transfer (section 7.1.2) and the HASH of the patch file was identical
with the one on the server, the problem has to be related to the size of the patch or
file alignment, for example that big endian and little endian are incorrectly swapped.
Due to time constrains this analysis of the error, while merging the new file, has to be
delayed to the project end or to subsequent work.

1 1 3 : 3 1 : 0 9 :
2 MCPS−Confirm : OK
3 UPLINK FRAME: 27
4 CLASS: A, TX PORT 146
5 Payload :
6 8C 88 81 4F C5 EC 6B DE 8F 96 C9 30 C4 7B 70 5D
7 C6 84 7B 52 94 6A 6B 4D 33 A3 58 BE E7 FC D6 ED
8 DATA RATE: DR_0, TX POWER: 0
9 U/L FREQ: 868300000

10 1 3 : 3 1 : 3 4 : Boot loader s t a r t e d
11
12 Mounting l i t t e F S volume .
13 ###### =========== Boot Config Data ============ ######
14 Boot counter : 0
15 Booting new Image ? : 1
16 Patch s t a t e : 0
17 ac tua l FW Vers ion : 0 0 0 0
18 new FW Vers ion : 1 2 3 5
19
20 Ready for Button i n t e r a c t i o n .
21 1 3 : 3 4 : 0 8 : User Up pres sed .
22 −−−−−−> −−−−−−> −−−−−−>
23 patch proce s s s t a r t s
24 −−−−−−> −−−−−−> −−−−−−>
25 1 3 : 3 4 : 1 0 :
26 ########## ========== PATCH PROCESS STATE ========== ##########
27 Patchprocess : 0
28 ########## ========== PATCH PROCESS STATE ========== ##########
29 Patchprocess : 1
30 . . .
31 . . .
32 . . .
33 ########## ========== PATCH PROCESS STATE ========== ##########
34 Patchprocess : 89
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35 1 3 : 3 5 : 4 6 :
36 ########## ========== PATCH PROCESS STATE ========== ##########
37 Patchprocess : 100
38 1 3 : 3 5 : 4 7 :
39 ########## ========== FLASHING DATA TO MEMORY ========== ##########
40 Flashed Block to address 0x 19000
41 F i l e s i z e remaning 0x 1E1AC
42 ########## ========== FLASHING DATA TO MEMORY ========== ##########
43 Flashed Block to address 0x 19200
44 F i l e s i z e remaning 0x 1DFAC
45 . . .
46 . . .
47 . . .
48 ########## ========== FLASHING DATA TO MEMORY ========== ##########
49 Flashed Block to address 0x 37000
50 F i l e s i z e remaning 0x 1AC
51
52 ########## ========== FLASHING DATA TO MEMORY ========== ##########
53 Flashed Block to address 0x 37200
54 F i l e s i z e remaning 0xFFFFFFAC
55 −−−−−−> −−−−−−> −−−−−−>
56 BOOTING NEW IMAGE
57 −−−−−−> −−−−−−> −−−−−−>

Listing 7.13: Merge and boot log.
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7.6. Complete system test

For the complete system test, the same test setup is used as in previous test (section 7.3),
but additionally one more demonstrator node was added to the network. To demonstrate
the process, the same patch will be sent several times. For each run the results and logs
will be saved. In table 7.1 the results of the test are presented. Row "TOT. FRAG" shows
the total number of fragments received by the demonstrator node. In the row "LOST"
the number of fragments lost during the multicast session are listed. The "PATCH
HASH" and "NEWFW HASH" indicates, if the calculated HASH of the received patch
file and the one form the new merged firmware file are correct.
From test three on, the "DEV2" was better aligned with the gateway to improve the
connection. It can be seen, that the patch file was in total correctly received 10 from 12
times. Regarding the described problem with the weak signal strength (figure 7.5), this
result proofs that the multicast protocol in general works as mentioned in the theory.
The problem with "DEV2" and the wrong HASH of the patched firmware was, that the
node did not store the patch file properly in the external flash, it was stored empty. Due
to this the merging process didn’t even started. Later the error was detected by as a
wrong key - value pair in the FW_conf.ini file caused, that the patch file was not flashed
to the external W25Q SPI flash.
The calculation of the new merged firmware HASH and printing it out to the console
was first done in this test. Seeing, that the HASH is correct, the bootloader should be
able to read it from the external flash, write it to the correct location in the internal
flash and boot the new version.
As already mentioned, a further analysis of the presented founding in these tests have
to be shifted to consequent work.

DEV1 DEV2

TOT.
FRAG

LOST PATCH
HASH

newFW
HASH

TOT.
FRAG

LOST PATCH
HASH

newFW
HASH

69 0 ✓ ✓ 77 5 ✓ ✗

71 2 ✓ ✓ 71 2 ✓ ✗

69 0 ✓ ✓ 69 24 ✗ ✗

69 0 ✓ ✓ 69 0 ✓ ✗

69 0 ✓ ✓ 69 0 ✓ ✗

69 0 ✓ ✓ 69 0 ✗ ✗

Table 7.1.: Results for multiple devices test.
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8. Results and Outlook

This thesis has been separated into two main parts: hardware and software design. These
two parts contained the sub categories: FUOTA server, LNS&Gateway and demonstra-
tor node. Together they built the infrastructure for a proof of concept in firmware
updates over the air in a LoRaWAN network. In the following section, the characteris-
tics of the demonstrator are listed, the results of this research work are recapitulated,
and a potential continuation is discussed.

8.1. Review of the demonstrator node

Figure 8.1 shows the full hardware stack of the demonstrator node.

Figure 8.1.: Demonstrator node.
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8.1.1. Provided hardware functionality

In the following list, the functionality of the presented demonstrator node is discussed.

• RFM96 module:
The RFM96 LoRa module is connected to the SPI bus on FLEXCOM8 of the
LPC55S16 and all provided GPIOs of the module are connected to the microcon-
troller. With the implementation of the sx1276_RFM96.c driver (figure 8.2), the
demonstrator node is able to communicate in a LoRaWAN network.

LoRa/
src/

boards/
LPC55s16-EVK/

sx1276_RFM96.c/
.../
.../

Figure 8.2.: RFM96 driver.

• W25Q NOR flash:
The external 16MByte NOR flash is connected to the SPI bus on FLEXCOM3.
Together with the LittleFS library, the demonstrator node provides a secure files
system to store firmware image files in it.

• DS3232 RTC:
The I2C RTC chip has its own battery for an accurate time management on the
node. Together with the McuLib the node is able to synchronize the internal RTC.

• SHT31 sensor:
For the sensors on the demonstrator node, the full functionality of the SHT31 over
the I2C interface is provided.

• SSD1306 display:
For the visualization of the process states, the I2C SSD1306 OLED display in
combination with the McuLib gives the print messages on the display. This is used
to show sensor values, FUOTA metadata and process states.

• Buttons:
The two push buttons on the demonstrator node provide the possibility to start
or stop processes on the board.
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8.1.2. Implemented firmware stack

The firmware on the demonstrator node was divided into two applications, the bootloader
and the FUOTA application. The bootloader is called at every startup and checks the
metadata stored in the config files on the external flash. Based on the metadata it de-
cides if a new firmware is ready to merge and boot or if the actual or back image has
to be loaded. For the merge process, the jDiff library [34] is ported to the LittleFS file
system and has the possibility to create a new image based on the patch file and the
current image.
The FUOTA application is the main running application on the demonstrator node.
With the integration of the LoRaMac-node [58] software stack it provides an interface to
communicate with the LoRaWAN network. In regular mode, the demonstrator node is
logging the sensor data of the SHT31 chip and periodically sends its data to the Chirp-
stack application server. With the use of the time sync, multicast and fragmentation
protocol, the demonstrator node covers the possibility to receive big data blocks divided
into fragments. These blocks could then be stored as a patch binary file in the external
flash and with a software reset the bootloader application can be called. The following
figure 8.3 shows the memory footprint of the two applications in the internal flash and
the RAM usage calculated at compiler time. The applications are compiled for size op-
timization. The bootloader uses 90% of the provided flash and 66%of the RAM, while
the FUOTA app is using 82% of the flash and 92%of the RAM. Regarding the memory
usage, in chapter 8.3 some recommendation are presented.
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Figure 8.3.: Memory footprint of the two application.
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8.2. FUOTA server

The FUOTA server is a JavaScript server which is communicating with the Chirpstack
application server using the MQTT protocol. This server is able to parallel setup multiple
predefined devices with the clock synchronization, multicast session and fragmentation
session. The solution for the detected problem, to send multicast messages during the
testing (chapter 7.3) was, to implement a second FUOTA server using a Python script
and the Chirpsatck API. This Python script is using gRPC to call Chirpstack network
server function directly form the FUOTA server. This solution leads to a two-stage
FUOTA server. In the first stage the JavaScript server is setting up all devices for the
FUOTA session and in stage-two, the Python gRPC server is sending the fragmented
data as a multicast message to all devices. The following figure 8.4 shows the part of
the new system design caused by the two-stage FUOTA server. With this new second
stage server, the fragmented data block can be sent over the Chirpstack infrastructure
to the demonstrator nodes.

Clock
Sync

User Application

Application Stack

FUTOA Application

Mcast Frag

FUOTA file distribution
manager

Chirpstack Backend

Chirpstack Application Server

Patch-file Generator

New Firmware Image

JavaScript FUOTA
device setup

Python gRPC multicast
messageing

FUTOA Server

Figure 8.4.: Adjusted system design of the FUOTA server.

134



CHAPTER 8. RESULTS AND OUTLOOK

8.2.1. Verification

In hindsight, the objectives for this thesis were set high. The main goal was to build
a demonstrator that runs parallel multi-device firmware updates over the air using a
local LoRaWAN network. This demonstrator includes the complete infrastructure that
is necessary for a successful procedure. The demonstrator shows, how a firmware image
can be sent to multiple nodes in the filed using the multicast protocol in a LoRaWAN
network.
An abstracted system design was introduced, from which the main task for the thesis was
derived. A key task was developing a demonstrator node based on the LPC55S16 EVK.
This board needed additional components for the LoRaWAN communication and the
node should further provide additional flash memory and some demonstrator properties,
such as sensors and actors. Already early in the project, a hardware shield was devel-
oped, which fits on the EVK extension header and provides the required functionalities.
With the driver implementation for the SX1276 LoRa chip, the node was able to commu-
nicate in the LoRaWAN network. During the integration of the required functionalities,
identified bugs of the hardware were documented continuously. Thus, a second as well
as improved version was developed later on.
With the working demonstrator node, the implementation of the FUOTA application
and bootloader were launched. Integrating the McuLib with the FreeRTOS and the
LittleFS into two applications provided a flexible firmware development. For the boot-
loader test, a Python script enables the possibility to send a patch file over the serial
interface to the demonstrator node. A jDiff patch library provides the functionality to
merge a patch file to build a new firmware. These functionalities were tested with basic
applications.
Furthermore, the FUOTA application was implemented and the functions of reading
sensor values and displaying different messages on the OLED display were tested. The
basic LoRaWAN application was adapted to run in a FreeRTOS task, in order to pro-
vide a flexible architecture of the firmware. Additionally, the key task of the clock
synchronization, multicast session setup and fragmentation session functionalities were
implemented. In parallel, the FUOTA server was implemented to send protocol messages
for the FUOTA session using a MQTT interface to the Chirpstack application server.
A second stage FUOTA server using a Python API with a gRPC integration had to be
incorporated to be able to send fragmented multicast messages. The complete FUOTA
session process has been tested, and the infrastructure is ready to send firmware images
from the FUOTA server to the demonstrator node.
Running two different applications on the same microcontroller, caused some problems
in debugging. Further, not having the McuShell functionality ready, due to a limited
flash memory, presented an additional problem for debugging the complete process of
the firmware update over the air.
In the end, the process has been tested on two demonstrator nodes running in parallel.
The FUOTA sessions setup and multicast transmission of the fragments worked well.
Some errors occurred while booting and merging the received patch file to a new image,
writing it from the external flash to the internal and running it, which should be further
analyzed in the future.
To briefly summarize the outcomes: The presented infrastructure is ready to build and
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send a firmware patch file over the LoRaWAN network using the multicast protocol to
multiple devices in the field in parallel. The following merge and boot process work in
basic examples but caused problems in a complete run through.

8.2.2. Validation

To validate the functionality of the demonstrator, various parts were tested in a de-
capsulated state. During the implementation of the drivers for the demonstrator node,
multiple aspects were tested using the debugging tools of the IDE. Single function calls
or application segments were stepped through in order to check the behavior of the ap-
plication and hardware. Together with a logic analyzer, the communication interfaces
and protocols of I2C and SPI bus were reviewed. Once the board drivers were working as
expected, the demonstrator node was then tested using a LoRaWAN sample application
for a periodic uplink. The sample application sent random content to the backend of
the Chirpstack server, running on the host machine.
In parallel, the secure bootloader was developed on the basis of the findings from the
research as well as previous work [53]. The use of the McuLib components Shell, FreeR-
TOS and FatFS, simplified the debugging process with the external W25Q SPI flash.
With the implementation of a Python script, that sends binary files in fixed block sizes
over a serial interface directly to the external flash, the merge process [33] was tested
using a simple hello_world firmware example. The bootloader was able to merge the
patch file with the actual version of the hello_world application binary stored in the
external flash to a new firmware binary. As a next step, the bootloader flashed the
new built binary to the inter application flash region. Finally, the bootloader boots into
this application region and the new hello_world application was ready to boot and run
correctly with printing new data to the serial interface.
To debug and test the FUOTA application on the demonstrator node, the FUOTA
server first needed to send correct setup messages. This was debugged with the help
of the Chirpstack application server web interface. From there, it was able to check if
the messages were sent to the LoRaWAN network and printed to the SEGGER RTT
terminal. From there, the message was analyzed for its propriety. After the messages
were correctly aligned, a code step through of the clock synchronization, multicast and
fragmentation session setup were done with the debugger. It was observed that the time
synchronization was made correctly, but the implemented software RTC could not save
the values properly on the internal flash. Further, it detected that the class C switch
was called but because the LoRaMAC handler was busy, the switch was not triggered.
After a code change, the class C switch was forced to perform all requests.
During the tests (chapter 7), it was seen, that the fragmented multicast messages could
not be sent from the JavaScript MQTT server since the Chirpstack API did not im-
plement the multicast downlink for the MQTT interface. To send multicast downlinks,
the Chirpstack API, with an integrated gPRC stack, has to be used. This had lead to
an implementation of a second stage FUOTA server using Python with the installed
Chirpstack API.
In the end, a complete system test has shown that the fragments can be sent as mul-
ticast messages to two different demonstrator nodes in parallel. These demonstrator

136



CHAPTER 8. RESULTS AND OUTLOOK

nodes were able to stick the fragments back to a patch binary file. This process could
have been validated by calculating the HASH of the patch binary file and compare it
with the HASH calculated by the FUOTA server. The bootloader call after the FUOTA
session was seen in the serial output log with a specific message. The merge algorithm
[33] then generated the new firmware version. With printing the calculated HASH from
the new firmware file to the serial port, a comparison to the calculated HASH on the
host machine was made manually. If these were identical, a pressed button triggered
the flashing of the new version to the internal flash region. The validation of this aspect
was not fully completed, as errors have occurred that could not be corrected before the
submission deadline of the thesis.
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8.3. Recommendations for improvement and future work

In the following chapter, the detected optimizations of the presented work for further use
or follow-up projects are evaluated. The chapter is divided into two sections: Demon-
strator node and FUOTA server.

8.3.1. Demonstrator node

8.3.1.1. Hardware

• RFM96 module
The tests in chapter 7.2 have shown that there is a major problem regarding the
signal strength of the RFM96 module. The source of the problem was not detected
yet, but having an already integrated SX1261MB2BAS shield in the firmware stack,
leads to the suggestion to use a SX1261 LoRa chip and develop the RF circuit
directly on the demonstrator node. The work [18] could serve as a guideline for
the hardware implementation.
Nevertheless, a clean error analysis should first be made. A brief search has shown
that the problem could have arisen due to a wrong configuration of the SX1276
LoRa chip [26].

• Pinout changes
The button SW3 (BTN1) and the LED D5 (figure 8.5) were mapped to the GPIOs
P0_12 and P0_11 of the LPC55S16. The problem is that these GPIOs are used for
the debug interface. Therefore, the SW3 and LED D4 need to be remapped as well
as the GPIO P1_9, which is the user button on the EVK mapped to the RFM96
DIO5. As a consequence, the USR button on the EVK can not be used anymore.
It recommends mapping the EVK buttons on the same pins as the demonstrator
shield buttons. Then either the EVK buttons or demonstrator node buttons can
be used.

Another small thing to change is the position of the OLED display. It should be aligned
to the border of the shield or placed in the middle of the PCB, so that the buttons are
more accessible.
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Figure 8.5.: Wrong pin mapping.
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8.3.1.2. Firmware

• ROM libraries
The actual firmware stack uses two applications, the bootloader and the FUOTA
application. Both applications are using identical firmware components. Figure 8.6
shows the used components from each application and marks the overlapping ones.
All these marked components are identical on boot application and therefore exists
twice in the internal flash, which is not ideal regarding a small memory footprint.
As an improvement these components should be built as a ROM library. This
means that they are decoupled from the application and stored as a shared library
in the internal flash. By this, both applications can access the library functions and
are not duplicated in the flash. Figure 8.7 shows a possible memory footprint after
using the approach of ROM libraries. This would drastically reduce the memory
footprint of both application and therefore also reduce the patch firmware update
size, which is desirable. The here explained approach is not tested, and a short
research has not many solutions or example publications. Although the problem is
known [20], a further deep research has to be performed. The other findings in the
short research were, that often a dynamic linker will be used with a library compiled
as position independent code. This approach has been presented in previous work
[52] and should be further analyzed in a possible follow-up project.

FUOTA App

Bootloader

jPatch lib

I2C Sensors &
Actors

LoRaMac-node

Display

FreeRTOS

LittleFS

W25Q driver

Display

LittleFS

FreeRTOS

W25Q driver

Figure 8.6.: Same firmware components used in both applications.
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Figure 8.7.: ROM library approach.
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• Improving firmware similarity
During the testing phase of this thesis it was noticed that even small changes in
the source code result in a large delta patch files. For example in the FUOTA
application, a minor change in the LoRaWAN uplink payload was made (shown
in code listing 8.1). Instead of sending the humidity as integer value, zero is sent.
Generating the delta from the firmware version were the correct humidity data is
sent to the one a zero is sent, results in a delta.bin file of the size of 14kByte. The
binaries are built with the compiler option for size optimized code. For a better
understanding of the big delta, the SRECORD file of both version were compared
using the compare tool from notepad. It can be seen that there are multiple
changes from the version 1 to version 2. Repeating this steps with the binaries
built with the compiler option set for not optimizing at all, the delta binary did
not result in a smaller size.
The problem of these big delta binaries, even of just small changes are made in the
source code, were addressed in previous work [52]. There are several techniques
to gain firmware similarity. Some of these were explained in the research chapter
4.2. For the project in this thesis, these techniques were not considered. However,
for further work and an optimized process, these techniques have to be taken into
account.

1 readSensorSHT31(&tmp , &hum) ;
2 tmpInt = ( uint32_t ) (tmp∗100) ;
3
4 /∗
5 ∗##################################################
6 ∗ This i s the on ly source code change from ver s i on 1 to

ve r i son 2
7 ∗##################################################
8 ∗/
9 //humInt = ( uint32_t ) (hum∗100) ;

10 humInt = ( uint32_t ) (0 ) ;
11
12 uint8_t appdata [ 8 ] ;
13 appdata [ 3 ] = tmpInt & 0x000000FF ;
14 appdata [ 2 ] = ( tmpInt >> 8 ) & 0x000000FF ;
15 appdata [ 1 ] = ( tmpInt >> 16 ) & 0x000000FF ;
16 appdata [ 0 ] = ( tmpInt >> 24 ) & 0x000000FF ;
17 appdata [ 7 ] = humInt & 0x000000FF ;
18 appdata [ 6 ] = ( humInt >> 8 ) & 0x000000FF ;
19 appdata [ 5 ] = ( humInt >> 16 ) & 0x000000FF ;
20 appdata [ 4 ] = ( humInt >> 24 ) & 0x000000FF ;

Listing 8.1: Small sourcecode change for delta example.
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• LoRaMAC-node using the McuTimeDate
At the moment, the LoRaMAC-node is using an own software RTC implementa-
tion. Regarding the timing problems occurred during the testing phase, this imple-
mentation should be adapted. The LoRaMac-node stack should use the McuLib
McuTimeDate functionalities. This would guarantee a correct and accurate time
mechanism.

• LoRaMac-node
The LoRaMac-node needd non-volatile memory to store keys, IDs and session
counter in it. Having an external memory on the demonstrator node leads to the
concept of storing this data on the external memory. To achieve this the board
abstraction drivers of the LoRaMac-node stack have to be adapted. This data
should be stored encrypted, to keep security risks minimal.

8.3.2. FUOTA server

The testing phase has shown that there are some optimization recommendations on the
FUOTA server for a better process flow.

• McKe_encrypted
In chapter 6.1.5 the use of the McKe_encrypted was presented. The calculation
of this key for a defined application key and multicast group ID, the Python script
in attachment A.2 generates the needed McKe_encrypted. The dynamic calcula-
tion of the McKe_encrypted for every device, that should be updated, is not yet
implemented. At the moment, the demonstrator nodes uses the same application
key and for this it only needs one McKe_encrypted. This solution was chosen to
simplify the process for a more dynamic use and not weakening security when all
devices have the same application key. This approach is yet be implemented.

• Python API and gRPC
As described in section 8.2 the FUOTA server had to be divided into two different
servers, due to the problem with sending multicast downlink messages. The solu-
tion was to implement the multicast messaging with the Chirpstack Python API
using gRPC. The whole setup of the nodes for the clock synchronization, multicast
and fragmentation session made with the JavaScript server should be ported to the
Python API. This API provides all the Chirpstack API functionalities and having
the whole FUOTA server in one service increases the robustness and dynamic of
the whole process.
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9. Conclusion

The goals as well as the expected results of this thesis were ambitious. The focus of this
project was the implementation of a complete demonstrator infrastructure to handle
a FUOTA process for multiple devices in parallel. The demonstrator is supposed to
include the FUOTA server, LNS&gateway and the nodes in the field.
The chosen approach allowed an extensive research for the specified building blocks.
Solutions that are targeting problems of the individual blocks were later combined in
a concept for the demonstrator infrastructure. The implementation of the concept was
then separated into three parts, that allowed partial success within the project and a
reasonably independent development. The designed PCB for the demonstrator node
successfully met the technical requirements needed to establish a communication in the
LoRaWAN network and to store data on an external flash chip.
The developed demonstrator infrastructure offers the functionality to set up a group
of demonstrator nodes into a multicast session. The FUOTA server can then send a
generated patch binary divided into fragments over the multicast channel parallel to the
demonstrator nodes. The node itself is able to merge the binary patch file to the actual
image, and provide a new firmware image. The implemented bootloader will then flash
the image into the internal flash of the microcontroller. After a successful merge and
flash process, the bootloader will boot the new firmware.
The development of the demonstrator, including the server and nodes, builds its own
environment. Together with the content of this documentation, the full work flow of
a parallel multi device firmware update over the air can be taken as a guideline for a
concrete industrial solution. Even if not all test criteria are fulfilled and there are a lot
of potential optimizations, most of the objectives of the thesis have been achieved.

9.1. Industrial trend

As described in section 4.1, the growth in installed IoT devices will increase rapidly
over the next 10 years. A major part of these devices communicate via the ultra low
power LoRaWAN protocol. The manufacturers of the LoRaWAN infrastructure and
the end nodes have recognized the importance of a firmware update over the air and
are in the process of providing solutions to perform such updates. In May 2022 the
LoRa Alliance® published new versions of the multicast, timesync and fragmentation
specifications [44][43][43]. Further they developed a new protocol which should simplify
the management of the firmware versions on the nodes [45]. These new publications
show, that the need for a framework for firmware update over the air is urgent. For a
stable integration of the FUOTA process in industrial solutions and to be able to record
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real performance data, demonstrators like the one developed in this thesis are vital.
It can be assumed that in the next 5 years the firmware-update-over-the-air process for
LoRaWAN nodes will be integrated as standard in industrial applications.

9.2. Lessons learned

During this thesis, I was able to further develop my skills in the area of embedded hard-
ware and software solutions. This includes identifying hardware components to reach
the set requirements, designing of own PCBs, implementing hardware drivers, porting
libraries, low level debugging and working with embedded operating systems. Rather
challenging was the server implementation which included Python and JavaScript script-
ing, understanding of network architectures, handling certificates, setting up software
stacks, working with docker containers and using different network interfaces.
Personally, I believe that the area of full-stack development is an interesting subject,
where you have the possibility to create a complete solution with frontend, server back-
end and even developing your own hardware. The dilemma that occurs while writing a
master thesis that requires the usage of these features is that there are many possible
sources for problems. Since the duration of the thesis is limited to one semester, the
time slot for a full-stack implementation as an individual is very restricted. This limited
period of time already conflicted the development in my last work and had the conse-
quence that in the end, when the system was ready for extensive testing, the time ran
out. This is also reflected in the quality of the presented tests and the way of working
itself.
The most important lessons I have learned are that I am still in need of on an intense
coaching support in the areas of time management and work planning, and that I still
need to improve a lot in these fields to gain a better work balance.
Finally, it can be said that the topic has challenged me enormously. However, I would
say in a positive way, since it gives me the aspiration to further develop it in order to
optimize the system and to gain an even better knowledge of the individual topics.

9.3. An Epilogue to the Master of Science in Engineering

After three years, I am now completing my Master of Science in Engineering. At the end
of my Bachelor of Science in electrical Engineering, I was sure to never start a master
study. Luckily, I was fortunate to start working at the university of applied science,
where they convinced me to pursue a master’s degree. During this master study I have
gained further knowledge in embedded hardware and software and started the interest
in embedded linux and backend integrations. But not only in the technical aspect, also
on a personal level I have gathered a lot of new experiences that will be important for
the future.
I would like to thank my advisor, Erich Styger, for the support I received during this time.
Without this good collaboration I would not have as this many positive experiences.
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A. Appendix

A. Appendix

The appendix starts after this page. It contains the following documents in exact order:

• Problem definition

• Time scheduled

• Schematic of demonstrator node

• LoRaWAN datarates table

• Python script for multicast key derivation

Further, there is an electronic appendix that additionally contains the following files:

• Complete Documentation as PDF

• Test folder with binary files and log files

• Mid-Presentation as PDF

• End-Presentation as PDF

• Source-Code FUOTA app as ZIP

• Source-Code Bootloader as ZIP

• KiCAD Project demonstrator node as ZIP
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Diplomposterausstellung: Sa, 08.07.2022 

→ Weitere Termine gemäss Ablauf Master Thesis  
 

8. Form der Abgabe der Master Thesis 

Das Prüfungsexemplar der Master Thesis wird ausschliesslich online eingereicht (für 
Advisor/Advisorin und Experte/Expertin). Nach der Verteidigung wird die finale Version der 
Master Thesis im pdf Format auf ILIAS hochgeladen und via Sekretariat BA&MA an die 
Bibliothek zur Archivierung gegeben. Die Angabe zur Sicherheitsstufe ist zwingend erforderlich: 
Öffentlich mit oder ohne Internet/intern/vertraulich, damit diese korrekt durch die Bibliothek 
archiviert werden kann.  
 

9. Titelblatt 

Für die Arbeit muss zwingend das von der Bibliothek vorgegebene Titelblatt verwendet werden. 
Dieses ist auf MyCampus abrufbar. Es besteht die Möglichkeit neben diesem noch ein eigenes Ti-
telblatt einzufügen. 
 

10. Selbstständigkeits- und Redlichkeitserklärung  

Die Selbstständigkeits- und Redlichkeitserklärung muss zwingend zusammen mit der Master Thesis 
abgegeben werden. Dieses Dokument darf jedoch nicht in die Master Thesis eingebunden werden, 
sondern muss als separates Dokument mitabgeben werden. Es ist die Vorlage der Bibliothek zu 
verwenden. Diese ist auf MyCampus abrufbar. 
 

11. Zusätzliche Bemerkungen 

Betreffend Geheimhaltung und Rechte am Geistigen Eigentum ist die Vereinbarung zwischen dem 
Student bzw. der Studentin, der HSLU und dem Industrie-/Wirtschaftspartner massgeblich. Eine 
Vorlage hierfür ist auf MyCampus abrufbar. 

 
Ort, Datum 
 
Advisor/Advisorin        Experte/Expertin           Student/Studentin 
 
_________________________   ________________________   ____________________________ 
 
Die Aufgabenstellung der Master Thesis muss mit allen Unterschriften bis spätestens Ende der 1. 
Woche des Kontaktstudiums dem Sekretariat BA&MA via mse@hslu.ch abgeben werden. Än-
derungen können danach jeweils per E-Mail übermittelt werden. 
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In dieser Zelle befindet sich ein Liniendiagramm, in dem jeder Meilenstein im entsprechenden Zeitrahmen dargestellt wird.
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A. Appendix

A.1. LoRaWAN

DataRate Modulation SF BW bit/s
0 LoRa 12 125 250
1 LoRa 11 125 440
2 LoRa 10 125 980
3 LoRa 9 125 1760
4 LoRa 8 125 3125
5 LoRa 7 125 5470

Table A.1.: Datarates LoRaWAN [21].

165



A. Appendix

A.2. Python script for multicast key derivation

1 from Crypto . Hash import CMAC
2 from Crypto . Cipher import AES
3 import semant ic_vers ion
4
5
6 def decrypt ( buffer : bytearray , root_key : bytes ) −> bytearray :
7 c iphe r = AES. new( root_key , AES.MODE_ECB)
8 return c iphe r . decrypt ( buffer )
9

10
11 def lorawan_derive_key ( buffer : bytearray , root_key : bytes ) −> bytearray :
12
13 c iphe r = AES. new( root_key , AES.MODE_ECB)
14 return c iphe r . encrypt ( buffer )
15
16
17 def lorawan_derive_mc_root_key ( lorawan_vers ion : semant ic_vers ion . Version ,

root_key : str ) −> str :
18
19 key_in = bytes . fromhex ( root_key )
20
21 comp_base = bytearray (16)
22
23 i f lorawan_vers ion . minor == 1 :
24 comp_base [ 0 ] = 0x20
25
26 key_out = lorawan_derive_key ( comp_base , key_in )
27
28 return "" . j o i n ( "{:02X}" . format ( x ) for x in key_out )
29
30
31 def lorawan_derive_mc_ke_key ( root_key : str ) −> str :
32
33 key_in = bytes . fromhex ( root_key )
34
35 comp_base = bytearray (16)
36
37 key_out = lorawan_derive_key ( comp_base , key_in )
38
39 return "" . j o i n ( "{:02X}" . format ( x ) for x in key_out )
40
41
42 def lorawan_derive_mc_session_key_pair (mc_addr : int , root_key : str ) :
43 key_in = bytes . fromhex ( root_key )
44
45 comp_base_app_s = bytearray (16)
46 comp_base_nwk_s = bytearray (16)
47
48 comp_base_app_s [ 0 ] = 0x01
49 comp_base_app_s [ 1 ] = mc_addr & 0xFF
50 comp_base_app_s [ 2 ] = (mc_addr >> 8) & 0xFF
51 comp_base_app_s [ 3 ] = (mc_addr >> 16) & 0xFF
52 comp_base_app_s [ 4 ] = (mc_addr >> 24) & 0xFF
53
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54 comp_base_nwk_s [ 0 ] = 0x02
55 comp_base_nwk_s [ 1 ] = mc_addr & 0xFF
56 comp_base_nwk_s [ 2 ] = (mc_addr >> 8) & 0xFF
57 comp_base_nwk_s [ 3 ] = (mc_addr >> 16) & 0xFF
58 comp_base_nwk_s [ 4 ] = (mc_addr >> 24) & 0xFF
59
60 app_s_key = lorawan_derive_key ( comp_base_app_s , key_in )
61 nwk_s_key = lorawan_derive_key (comp_base_nwk_s , key_in )
62
63 return "" . j o i n ( "{:02X}" . format ( x ) for x in app_s_key ) , "" . j o i n ( "{:02X}"

. format ( x ) for x in nwk_s_key)
64
65
66 i f __name__ == "__main__" :
67 lorawan_vers ion = semantic_vers ion . Vers ion ( "1.0.4" )
68
69 # Inputs
70 app_key : str = "000102030405060708090 A0B0C0D0E0F"
71 mc_key = "0102030405060708090 A0B0C0D0E0F10"
72 mc_addr = 0x1FFFFFF
73
74 # Outputs
75 mc_root_key = lorawan_derive_mc_root_key ( lorawan_version , app_key )
76 mc_ke_key = lorawan_derive_mc_ke_key ( mc_root_key )
77 mc_key_encrypted = "" . j o i n ( "{:02X}" . format ( x ) for x in decrypt ( bytes .

fromhex (mc_key) , bytes . fromhex (mc_ke_key) ) )
78 mc_app_s_key , mc_nwk_s_key = lorawan_derive_mc_session_key_pair (mc_addr

, mc_key)
79
80 print ( "LoRaWAN " + str ( lorawan_vers ion ) )
81
82 print ( "AppKey : " + app_key )
83 print ( f "McAddr : 0x{mc_addr :08X}" )
84 print ( "McRootKey : " + mc_root_key )
85 print ( "McKeKey : " + mc_ke_key)
86 print ( "McKey : " + mc_key)
87 print ( "McKeyEncrypted : " + mc_key_encrypted )
88 print ( "McAppSKey : " + mc_app_s_key)
89 print ( "McNwkSKey : " + mc_nwk_s_key)
90
91 print ( )
92 lorawan_vers ion = semantic_vers ion . Vers ion ( "1.1.0" )
93
94 # Inputs
95 app_key : str = "000102030405060708090 A0B0C0D0E0F"
96 mc_key = "0102030405060708090 A0B0C0D0E0F10"
97 mc_addr = 0x1FFFFFF
98
99 # Outputs

100 mc_root_key = lorawan_derive_mc_root_key ( lorawan_version , app_key )
101 mc_ke_key = lorawan_derive_mc_ke_key ( mc_root_key )
102 mc_key_encrypted = "" . j o i n ( "{:02X}" . format ( x ) for x in decrypt ( bytes .

fromhex (mc_key) , bytes . fromhex (mc_ke_key) ) )
103
104 mc_app_s_key , mc_nwk_s_key = lorawan_derive_mc_session_key_pair (mc_addr

, mc_key)
105
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106 print ( "LoRaWAN " + str ( lorawan_vers ion ) )
107
108 print ( "AppKey : " + app_key )
109 print ( f "McAddr : 0x{mc_addr :08X}" )
110 print ( "McRootKey : " + mc_root_key )
111 print ( "McKeKey : " + mc_ke_key)
112 print ( "McKey : " + mc_key)
113 print ( "McKeyEncrypted : " + mc_key_encrypted )
114 print ( "McAppSKey : " + mc_app_s_key)
115 print ( "McNwkSKey : " + mc_nwk_s_key)

Listing A.1: Multicast key generator script [46]

168


	Introduction
	Terms and Definitions
	Background
	Context
	Purpose of this Thesis
	Preliminary Work
	Requirements
	Procedure
	Approach
	Challenges

	Scientific research
	Basics
	Over the air firmware update

	Hardware Design
	LoRaWAN node
	LNS & Gateway hardware
	FUOTA server

	Software Design
	FUOTA server
	LNS & Gateway
	Demonstrator node firmware

	System tests
	Bootloader
	LoRaWAN
	FUOTA
	Multicast-Fragments handling
	Merge and boot process
	Complete system test

	Results and Outlook
	Review of the demonstrator node
	FUOTA server
	Recommendations for improvement and future work

	Conclusion
	Industrial trend
	Lessons learned
	An Epilogue to the Master of Science in Engineering

	List of Figures
	List of Tables
	List of Snippets
	References
	Appendix
	LoRaWAN
	Python script for multicast key derivation


