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Introduction 
Nowadays, artificial intelligence is a highly spread topic and is tried to be used in many different 
applications. Reinforcement learning is a very promising concept for controlling tasks. At the 
same time, digital twins such as system models are already common for numerous applications. 
Modelica allows the creation of complex multidomain system models with relatively low effort. 
Those two topics are predestined to be combined since reinforcement learning relies on a sys-
tem to learn from. Thanks to using a system model, costs can be saved very efficiently, as 
compared to a real experimental setup, the training time and expense for changes during the 
design process can be greatly reduced. 

The aim of this work is to gain first experiences on applying reinforcement learning to physical 
system models with Modelica. This shall be reached by creating a showcase. Those first expe-
riences should provide a basis for future investigation and applications while also allowing a 
first overview of the opportunities and challenges. 

The paper will be structured as follows: First, the fundamental theory and classifications are 
provided which are essential to understand the following topics. Afterwards, the toolchain used 
for the showcase is explained, and determinants of the application are defined. In the last chap-
ters, the proceed of the created showcase is described, which includes experienced challenges 
and findings. It will also slightly go into evaluation. The final created showcase is a system of 
a double pendulum which shall be swung up and balanced to an upright position, starting from 
a hanging position. This result was reached after evading some difficulties during the process. 
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1 Basics 

1.1 Artificial Intelligence 
The term AI defines intelligent behaviour performed by machines. Due to the fact that intelli-
gence is not clearly defined, AI is hard to define as well. Nevertheless, it is used to describe the 
ability of perceiving an environment and reaching a certain goal. This includes the ability of 
developing behaviours to achieve these goals with the help of perception, cognition, and action. 
AI is strictly separated from cognitive science which tries to build a model of human behaviour 
or human intelligence. Since the term AI is not clearly defined and some algorithms work with 
similar mechanics, there is no clear subclass structure which can be stated but some examples 
of subclasses are machine learning, natural language processing, and image recognition. [1] 

1.2 Machine Learning 
Machine Learning is the biggest subdivision of AI in which systems can learn from data without 
explicitly being programmed what to do. Like this, machine learning can generate knowledge, 
train algorithms, or identify connections, dependencies, and patterns from the data. There is 
always a statistical model which is trained with help of the training data. This model then can 
be applied to other data in order to create e.g. clusters, classifications, or predictions. 

 

Figure 1: Machine Learning Overview 

There are three main types of machine learning principles. Unsupervised learning is used to 
discover patterns and information in datasets which are not labelled previously. It can for ex-
ample cluster data into groups or find relationships between variables in a given dataset. The 
mathematical goal is to find a function 𝑓(𝑥) for a given data 𝑥. [2] 
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Supervised learning uses labelled datasets and trains an algorithm to perform a regression or a 
classification. This can then be used to do regressions, decisions or to classify a new dataset 
according to the training set. The mathematical goal is to find the function 𝑓(𝑥) for a given data 
𝑦 = 𝑓(𝑥) while the parameters 𝑦 and 𝑥 are known. [2] 

In reinforcement learning, there is no need to provide a training data. Instead, the algorithm 
generates the data himself by interaction through trial and error on the given system. The re-
ward-function determines how well the performed decision is. This leads to a very open ap-
proach while the desired outcome is still clearly defined. The generated decision model can be 
used for controlling tasks (if the goal is to find the optimal policy) or to predict the value of 
taking actions which follow a certain policy (if the policy is predefined). This document will 
only focus on control problems for reinforcement learning. The general mathematical goal of 
reinforcement learning can be stated as having a function 𝑦 = 𝑓(𝑥) with a given data 𝑥 (→state) 
and the goal is to find the function 𝑓(𝑥) (→policy) which corresponds to a certain 𝑦 (→action) 
for each 𝑥. This function shall be maximizing 𝑧 (→return) while 𝑧 = 𝑓(𝑦, 𝑥). [3] 

1.3 Reinforcement Learning 
In reinforcement learning for controlling tasks, an agent shall be trained to take the actions 
which result to the maximal reward. The observation gives him information about the current 
system state. Using the information from the observation, the policy decides which action is 
taken. The reinforcement learning algorithm changes that policy based on the observation, the 
action which was taken and the corresponding obtained reward. The goal is always to find the 
policy which leads to the maximal total reward. [3–7] 

 

 

Figure 2 RL procedure [8] 
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1.3.1 Basic definitions 

1.3.1.1 Environment 

The state of the system is defined in the environment. A defined quantity of variables can be 
changed by means of the actions taken. Also, a defined quantity of variables from the state is 
outputted through the observation. The environment defines the behaviour of the system, thus 
the next state based on the current state and the action taken. Additionally, the reward is deter-
mined and outputted in the environment. The environment in this definition is not equal to the 
process. It just involves the process added by some other definitions like the reward-function. 
[9] 

1.3.1.2 Agent 

The agent is the controller and the controller designer of the system. The policy defines that 
controlling behaviour while the reinforcement learning algorithm optimizes the policy in order 
to gain the maximal reward from the possible actions which can be taken. To do this, the agent 
has information about the observed variables and the reward but not necessary about the whole 
system state. [9] 

1.3.1.3 State 

The state defines the whole status of the environment. The ‘current state’ describes the current 
situation while the ‘next state’ describes one step later after an additional action is taken. [9] 

1.3.1.4 Observation 

The observation includes all by the agent observed state-variables of the current state. The sys-
tem can either be fully observed or it can be partially observed which describes the fact that not 
all state-variables are observed by the agent. The observation can be imagined as the sensor 
measurements. The observation-space predefines the possible range of those variables which 
ensures that the distribution of the agent is reasonable. [9] 

1.3.1.5 Action 

The action contains the values of the controlled variables at the current state. The agent can 
change those variables within the specified range defined in the action-space. It is set at the 
beginning of each step according to the policy and the current state. [9] 

1.3.1.6 Reward 

The obtained reward based on the reward-policy and the current state is determined at the end 
of each step. The total reward (or return) defines all cumulated rewards from each step until the 
end of the episode. The goal is to maximise the total reward while the highest step reward 
doesn’t always have to lead to the highest total reward. [9] 
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1.3.1.7 Policy 

The policy is a mapping from each state to an action that decides how the agent acts at each 
specific state. It can either be deterministic (if a specific state leads certainly to a specific action) 
or stochastic (if a specific state leads only with a probability to a certain action). If the policy is 
stochastic, it is for a given state, a probability distribution over the set of possible actions. So, 
it gives the probability of picking a certain action at a certain state. The policy can be considered 
the controller of the system. [9] 

1.3.1.8 Value 

The value describes the expected return starting from the current state and following the policy. 
The Q-value (or action-value) describes the expected return starting from the current state by 
taking a certain action and then following the policy for the next states. Some algorithms don’t 
follow the policy for reward estimation in future steps but take the most valuable actions known 
instead. This can make a slight difference. [9] 

1.3.1.9 Episode 

An episode includes all the steps with states, actions, and rewards until the fixed terminal state 
is reached. At the end of an episode, the system and the reward get reset to the initial state. [9] 

1.3.2 Markov Decision Process 

Most reinforcement learning environments (all used here) are pictured as Markov decision pro-
cesses (MDP) to create a mathematical model, why it is crucial to understand this topic. A 
Markov process is a discrete stochastic process following the Markov property which simplifies 
the depiction of a continuous world. [10] 

1.3.2.1 Markov Property 

The Markov property describes a state which is only dependent on its immediate previous state 
and not on any states before that. Corresponding, the next state is only depending on the current 
state and not on any of the past states. Considering all system variables, this is true for the real 
world. [11] 

1.3.2.2 Markov Process 

The Markov process is a process with different states that obey the Markov property. Each state 
has a state transition probability (P) to jump to a different state. The Markov reward process 
(MRP) is additionally defined by rewards (R) which are received by reaching a certain state. 
The state transition probability is in this case purely stochastic and not controlled. [11] 
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Figure 3 Example of an MRP [11] 

1.3.2.3 Markov Decision Process 

A Markov Decision Process is a MRP with actions. In this case, the state transition probability 
is defined by the stochastic base and additionally by actions which allow an agent to influence 
or control the state transition and with this the obtained reward. This is how the RL agent con-
trols the system. [11] 

1.3.3 Bellman equation 

The RL agent must know which state is best at the current time. The goal is to collect the 
maximal total reward (return) over all state transitions until the end of the episode. This esti-
mated return is calculated with the value function. The action with the highest Q-value should 
be taken while the state with the highest value is the most desirable state. Consequently, the 
policy is followed on the value function through the optimized value but also the value is given 
by the policy function. Therefore, you theoretically get the same optimal result whether you 
optimize the value or the policy function. 

To calculate the value and the Q-value in an MDP, the bellman equation is used. It says that the 
current value is equal to the current reward plus the discounted values at the next steps follow-
ing the agent’s policy. This is similar to economic theories where an immediate reward is worth 
more than a reward later on because the future always holds some unknowns. [9] 

 

Bellman equation for Value calculation:  𝑽(𝒔) = 𝑹(𝒔) + 𝜸 ⋅  ∑ 𝑷(𝒔′|𝒔)𝑽(𝒔′)𝒔′𝝐 𝑺  

Bellman equation for Q-Value calculation: 𝑸(𝒔, 𝒂) = 𝑹(𝒔, 𝒂) + 𝜸 ⋅ ∑ 𝑷(𝒔′|𝒔, 𝒂)𝑽(𝒔′)𝒔′𝝐 𝑺  
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1.3.3.1 MDP with Bellman equation 

In the flow chart below, the whole system of an MDP with the use of the Bellman equation is 
apparent. The starting point is at state (s), while the loop at state (s+t) continuous until the end 
of the episode. The total obtained reward with the discount factor yields to the value or Q-value. 
If the probabilities of the state transitions are known, the Bellman equation can be calculated 
for each state without the use of any reinforcement learning. 

 

Figure 4: MDP with Bellman Equation 

1.4 Deep Learning 
Deep learning is machine learning with the use of a neural network with multiple hidden layers. 
Many advanced reinforcement learning agents use deep neural networks. This is then called 
deep reinforcement learning. The neural network is simply a mapping from input to output 
variables which in reinforcement learning can represent the policy or the value function. [12] 

1.4.1 Neural Networks 

A neural network is built with neurons and connectors. In case of the policy network, the input 
layer has a neuron for each observed variable while the output layer has a neuron for each action 
variable. The number of hidden neurons is independent on the system and can have any quantity 
of neurons in each layer and any quantity of layers. Each connector has a weight which simply 
multiplies the value of the connected neuron with a number and gives it to the next neuron. The 
neurons in the hidden layers then add all the numbers from the connectors and calculate a new 
number based on a defined activation function. This function can vary but often it is a squashing 
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function which normalizes and squashes the value for example between 0 and 1. This procedure 
repeats in each hidden layer. When all the hidden layers are passed, the output layer gets passed 
a value to each neuron which in this case represent the actions. [13] 

In the graphic below, a simple neural network with two input and one output layer is illustrated. 
The circles represent the neurons while the arrows represent the connectors.  

 

Figure 5: Neural Network Structure 

The following graphic shows an example of this neural network how the input signals evolve 
to a corresponding output signal: 

 

Figure 6: Neural Network Numeric Example 
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1.4.1.1 Bias 

A bias is a scalar which shifts the value of a neuron output. This allows 
the neural network to make better data fitting and is often used in neural 
networks. It basically turns the neuron function from 𝑧 = 𝑓(𝑤1𝑥1 +

𝑤2𝑥2 + 𝑤3𝑥3) to 𝑧 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏). This parameter 
can as well as the weight also be changed during the learning process. 
[14] 

1.4.2 Training a Neural Network 

1.4.2.1 Optimization 

To train a neural network, usually a loss function is defined which quantifies an error between 
the prediction and the target (perfect neural network model). The goal of parametrizing a neural 
network is mostly to minimize this loss value with optimization by changing the weights and 
biases. There are many different approaches for defining this loss function which will not be 
explained here. In reinforcement learning, the loss function is often a modified RL-algorithm 
method. To solve this optimization problem, also many different approaches are available such 
as back-propagation, gradient descent etc. [14] 

1.4.2.2 Regularization 

Because of the large number of layers and parameters, neural networks have a significant risk 
of overfitting, which makes the network perform extremely well on training data but weak on 
a slightly different dataset. This is also a problem in training because the neural network is 
mostly not perfect which always makes the training data a slightly different dataset too. To 
prevent this, there are some simple regularization methods available. 

Weight decay penalties parameters with a high absolute value to encourage parameters with a 
lower absolute value. This results to a more generalized network with less dependency on a 
single observation. 

Another problem of large neural networks is co-adaptation which means that neurons are ex-
tremely dependent on each other. To prevent this, during training, some weights are randomly 
set to zero which disconnects separate neurons. This makes the network less dependent on sin-
gle neurons which makes it more robust and less likely to overfit. 

There are more regularization methods available but those are the most important ones for re-
inforcement learning in physical systems. [14] 

Figure 7: Bias Imple-
mentation [1] 
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2 Background of Reinforcement Learning Algorithms 
There are many different approaches for optimizing a policy to achieve the maximal reward by 
taking the best actions in each state of an MDP. The goal of reinforcement learning algorithms 
is always to optimize the policy which is essentially the controller so that the total reward at the 
end of the episode is as high as possible. So, the reinforcement learning optimization problem 
can be expressed as follows: 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋[𝐺(𝜋)] 

With 𝜋∗ being the optimal policy and G being the total reward at the end of an episode. This 
problem is mostly solved by the help of the value or Q-value which describes the expected 
return at a certain state. [14] 

The following chart categorizes RL-Algorithms in main groups. Some advanced algorithms 
however also try to combine those approaches. 

 

Figure 8: RL Algorithms Overview [15] 
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2.1 Dynamic Programming 
If a complete and perfect model with all the transition probabilities of the MDP is known, there 
is no need for true reinforcement learning to solve the optimization problem. It can simply be 
calculated iteratively based on those transition probabilities. Even though there is rarely a per-
fect model of the MDP available, this still builds the foundation of reinforcement learning. 
There are two essential approaches to iteratively calculate the optimal policy. 

2.1.1 Value Iteration 

With value iteration, an initial value for each state is set first (e.g., 0). Then the Q-value for each 
possible action in this state is calculated (6). If this is finished for each action, the value is 
calculated for the best action (6). The formula in line 6 is the same as: 

𝑉(𝑠) = max
𝑎

∑𝑄(𝑠, 𝑎) 

Then this procedure is repeated from the beginning while taking the new estimated state-value 
for future states. If the new values and the old values converge, the loop is finished (9) and the 
optimal actions for all states are found while also the state-values are well estimated. Those 
state-action pairs are then extracted to build the policy function (11). This procedure is called 
value iteration because it only uses the value function and no policy function for the iteration 
process. [16] 

 

Figure 9 Value Iteration Pseudo-Code [17] 
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2.1.2 Policy Iteration 

The policy iteration algorithm repeats a policy evaluation and a policy improvement step re-
peatedly until convergence. First, a random initial policy is set (1). Then, in the policy evalua-
tion step (3), the value of each step is calculated using the bellman equation and the current 
policy (8). This is again repeated until convergence (11). In the policy improvement step (13), 
the policy is updated by trying to maximize the Q-value for each step (17). Each iteration re-
peats those two steps until the policy converges (20). [16] 

 

Figure 10 Policy Iteration Pseudo-Code [17] 

2.1.3 Comparison 

The policy iteration algorithm is a bit more complex than the value iteration algorithm. How-
ever, it needs less iteration steps to converge and thus is faster. The fundamental problem in 
application is always a maximization of the value function by changing the policy. The policy 
iteration method uses two separate iteration processes for this problem while the value iteration 
method merges them into one iteration process. [16] 

Policy evaluation and policy improvement are the two underlaying basic principles of almost 
all reinforcement learning algorithms.  
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2.2 Monte Carlo and Temporal Difference Learning 

2.2.1 Monte Carlo Method 

If the MDP dynamics are not completely known, the policy evaluation step shown in DP cannot 
be applied because the state-values are unknown since the state-transitions are unknown. There-
fore, the Monte Carlo method simply averages the return (G) of different episodes which passed 
a particular state with the number of visited times (k). The average of those returns then become 
the estimated value of a certain state. According to this procedure, the Q-value can also be 
calculated by taking the mean return of state-action pairs which were passed in experienced 
episodes. [14, 18] 

𝑉(𝑆𝑡) = 𝑚𝑒𝑎𝑛[𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑆𝑡)] 

𝑄(𝑆𝑡, 𝐴𝑡) = 𝑚𝑒𝑎𝑛[𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑆𝑡, 𝐴𝑡)] =
𝐺1 + 𝐺2 + ⋯ + 𝐺𝑛−1

𝑘 − 1
  

The policy improvement step in Monte Carlo is simply done by taking the actions which result 
in the maximal Q-value. 

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎[𝑄(𝑠, 𝑎)] 

This procedure is repeated until the estimated returns (and consequently the policy) converges. 
The pseudo-code for Monte Carlo learning looks as follow: 

 

Figure 11: Monte Carlo Algorithm [14] 
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2.2.2 Incremental Monte Carlo 

The problem of this algorithm is that every observed return must be saved in a list and averaged 
again which is very inefficient. The advanced computation of the Q-value simply adds up the 
difference between the obtained return and the old Q-value estimation to the old Q-Value esti-
mation. This addend is multiplied with the inverse of the number of visited times (or a weight 
factor) which controls how fast the estimate is being updated. [14] 

𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑊𝑒𝑖𝑔ℎ𝑡 ⋅ (𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) 

𝑄𝑘+1 = 𝑄𝑘 +
1

𝑘
(𝐺𝑘 − 𝑄𝑘) = 𝑄𝑘 + 𝛼(𝐺𝑘 − 𝑄𝑘) 

This computation of the Q-value doesn’t need to save all experienced returns and instead is able 
to calculate incremental a new estimation of the Q-value at the end of an episode. 

The value calculation is equivalent: 

𝑉𝑘+1 = 𝑉𝑘 + 𝛼(𝐺𝑘 − 𝑉𝑘) 

 

2.2.3 Temporal Difference Method 

The Monte Carlo method can only update the values or Q-values after each episode. To allow 
an update after each sample, Monte Carlo and DP can be combined for problems without com-
plete knowledge about the process. This method is called temporal difference method (TD). 

Therefore, the return is replaced with the reward at the next timesteps plus the discounted value 
at the next timestep. This can be computed step by step and not only at the end of an episode. 
[14, 18] 

The Value and Q-value computation with TD accordingly is done as follows for a 1-step TD: 

𝑉(𝑆𝑡)𝑘+1 = 𝑉(𝑆𝑡)𝑘 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)𝑘 − 𝑉(𝑆𝑡)𝑘] 

𝑄(𝑆𝑡, 𝐴𝑡)𝑘+1 = 𝑄(𝑆𝑡, 𝐴𝑡)𝑘 + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1)𝑘 − 𝑄(𝑆𝑡, 𝐴𝑡)𝑘] 

This can be done with the following algorithm: 

 

Figure 12: Temporal Difference Algorithm [14] 
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2.2.4 Data storage 

The estimated Q-values or values and the policy must be stored to be able to learn and to control 
the system after training. This can be done with the use of a table or with a neural network. 
Often, a Q-table is used which involves the estimated Q-values based on the observations and 
the possible actions. This can look the following way for two continuous observations and one 
possible action with two possible discrete values: 

Observation 1 Observation 2 Action Q-Value 

10 5 0 20 

10 5 1 40 

2 8 0 80 

2 8 1 0 

… … … … 

Figure 13: Example Q-Table 

The size of the table is given in advance by the possible actions and observations. For continu-
ous observations and actions, a discretization according to the desired accuracy is needed. 
While training the agent, the Q-values are iteratively estimated more accurate. Based on this 
table, the policy can easily be extracted by taking the actions which result to the highest Q-
values. [19] 

When neural networks are used, the same principle is applied just by parametrizing the NN 
parameters which, for an actor/critic agent, results to a Q-value estimation using a function 
instead of a table. Based on those Q-value estimations, the policy can be extracted and stored 
in a neural network also by using a function instead of a table. This is done directly by estimat-
ing the error and changing the neural network to minimize that error. It is also possible to di-
rectly parametrize the policy network without the use of a value network. But still, the values 
or Q-values (or just the errors) must be implemented in some step to know which behaviour is 
better. A possible algorithm for that purpose is described in chapter 3.1.3. [14] 
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3 Reinforcement Learning Algorithms 

3.1 Model-free RL 
Model-free RL algorithms don’t create a model of the MDP. Instead, they estimate the Q-Value 
and update the policy directly from observed experiences.  

There are two different main types of RL-Algorithms. On-policy algorithms learn by only using 
actions which are according to the last version of the policy with slight changes of the current 
action taken. Those changes are crucial because if the algorithm only acts the way it already 
knows as the best actions, it cannot learn and always does the same thing. Future predicted 
actions for calculation of the Q-value are always based on the policy when using on-policy 
algorithms. Off-policy algorithms have a policy for exploring the environment to collect data 
and a different updated policy for acting in the exploitation case. Off-policy algorithms there-
fore can use any data obtained from exploration to update the exploitation policy. Those two 
policies are often called behavioural policy (exploration) and target or updated policy (exploi-
tation). Future predicted actions for calculation of the Q-value are not based on the policy but 
on the explored best actions at the particular state when using off-policy algorithms. Monte 
Carlo and TD can both be used for on-policy as well as off-policy reinforcement learning. Plain 
policy optimization methods are by definition on-policy. However, advanced RL algorithms 
often use combinations of those methods and also apply policy optimization to off-policy learn-
ing. [9, 15] 

3.1.1 Algorithms using Temporal Difference 

3.1.1.1 SARSA (On-Policy) 

SARSA is the most basic approach to apply TD controlling. It basically combines the policy 
evaluation of TD with a policy improvement step in between. The simplified procedure for a 1-
step SARSA is as follows: 

 

Figure 14: SARSA(1) Algorithm [14] 
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Again, here the actions must sometimes be different than the policy prescribes to not get stuck 
in a local maximum. This behaviour is often accomplished with an 𝜖-greedy policy which has 
a probability of 1- 𝜖 to take the action with the highest estimated Q-value and a probability of 
𝜖 to take a random action from the action-space. 

The bootstrapping of the reward plus the discounted Q-Value can also be done for more than 
one step. If this is done for an infinite number of steps (until the end of the episode) this should 
equal to the return which makes this method equivalent to Monte Carlo. [9, 14, 18] 

3.1.1.2 Q-Learning (Off-Policy) 

Q-Learning is the most basic off-policy application of TD controlling. This plays a very im-
portant role in many reinforcement learning applications while most off-policy algorithms use 
this approach. The main difference from Q-Learning to SARSA is that the action chosen to 
calculate the Q-value of the next timestep (target Q-value) is no longer dependent on the policy 
being used. It is simply making a Q-table which describes the Q-value of all state-action pairs 
and then choosing the action with the highest value from this table. The pseudo-code for Q-
learning is: 

 

Figure 15: Q-Learning Algorithm [14] 

Note that the selected action 𝐴𝑡 at line 5 is chosen by a policy which explores (e.g. 𝜖-greedy) 
and the selected action 𝑎 at line 7 is chosen by a policy which doesn’t explore but just chooses 
the best actions based on the experience (corresponds to 𝜖-greedy policy with 𝜖 = 0). That 
difference makes the algorithm off-policy. The fact that for future timesteps, not the policy but 
actions with the maximal Q-value are selected, makes this algorithm superior to find the global 
maximum although it often takes longer to converge. [9, 14, 18] 
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3.1.2 Algorithms using Policy Optimization 

Methods which use policy optimization try to maximize the return (G) directly by changing the 
policy parameters (𝜃) which results to the following: 

𝐺(𝜋𝜃) = 𝐸 {∑ 𝛾𝑘

𝑘=0

𝑟𝑘} 

𝜋∗(𝜃) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃[𝐺(𝜋𝜃)] 

For applications in deep reinforcement learning with the use of a neural network, the policy 
parameters are the parameters (weights and bias) of the neural network. 

This optimization is often done with the policy gradient method which uses the gradient of the 
return to update the policy. The policy parametrization update rule then is defined by: 

𝜃ℎ+1 = 𝜃ℎ + 𝛼ℎ ⋅ ∇ θ𝐺(𝜋𝜃)|𝜃=𝜃ℎ
 

The parameter 𝛼 is the learning rate which defines how strong the policy is updated according 
to the gradient. The update number ℎ is not the same as the timestep number 𝑘. Mostly, the 
update frequency is significantly less frequent. 

The main difficulty with this method is to find a good estimation of the policy gradient 
∇ θ𝐺(𝜃)|𝜃=𝜃ℎ

. The fact that the system can’t be modelled in every detail just with the data 
generated, requires a stochastic estimation of the gradient without any model. There are differ-
ent approaches for this problem, the most common use finite-differences or likelihood ratios. 
Those methods will not be explained here. 

Policy gradient methods are by definition on-policy and only converge to a local maximum 
while value-function methods converge to the global maximum. This explains that on-policy 
algorithms using this principle are less likely to find the optimal behaviour then off-policy al-
gorithms. Nevertheless, policy gradient methods are especially for automatization problems in-
teresting because they are guaranteed to converge at least to a local maximum and often use 
fewer parameters in the learning process than value-function methods. Policy gradient methods 
can be used model-free as well as model-based. 

Many advanced model-free RL-algorithms use a combination of value-function and policy gra-
dient methods to obtain a better result. This is often done with off-policy algorithms which use 
the principle of Q-learning. Accordingly, those algorithms labelled as off-policy are in fact a 
combination of both categories. [20, 21] 
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3.1.3 Deep RL Algorithms 

Using neural networks slightly changes the reinforcement learning process. As stated in chapter 
2.2.4, the Q-values don’t need to be completely calculated to optimize the NN. This can be done 
just by using the error estimation and minimizing that error. The following pseudocode provides 
an understanding of how a simplified RL algorithm with the use of NN works. This example is 
purely hypothetical because applied RL algorithms with neural networks use additional highly 
mathematical approaches which make it hard to understand the fundamentals. 

 

Figure 16: Principle of Deep RL Algorithm using TD 

This example is based on temporal difference to calculate the critic loss which is used to opti-
mize the NN. The critic is then used to calculate the actor loss and optimize the actor network. 
The difference to tabular RL is eventually just the additional step of optimizing the NN to depict 
the Q-values and the policy. [22–24] 

3.2 Model-based RL 
Model-based RL Algorithms try to build a model of the MDP dynamics and then solve the 
optimization problem to find the best policy. Those MDP dynamics include the reward-function 
and state-transitions. The policy can be created iteratively using dynamic programming (chapter 
2.1) or with the use of decision trees (often used for discrete action-spaces). 

One big challenge of model-based algorithms is the data generation to build the model. For this 
purpose, many different approaches are available which cannot easily be categorized in clusters 
of methods. In general, many state-action pairs must be sampled to get the information about 
the next state and the reward. In probabilistic processes, where a state-action pair also has a 
transition probability, those pairs must be sampled multiple times to calculate the transition 
probability. With this information and some estimations or generalizations, the model then can 
be built. 

Model-based algorithms have much better sample efficiency then model-free algorithms. This 
means that with a lower sample size, the algorithms perform much better than model-free 
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algorithms. Also, a base model can be given previously to the algorithm so that it can start with 
a much better performance. This is useful for critical applications which need to be trained in 
the real world. Another strength of model-based RL is the ability to plan explicitly. This allows 
the agent to deliberately make decisions which are good in a long term even when the system 
has slightly changed. Model-free RL algorithms also make decisions which are good in a long 
term, but they do it implicitly and are not able to adapt quickly to a changed system. 

However, when predictions are strung together and little errors are made, they compound over 
multiple steps and can get bigger. There is also a challenge because the policy optimization can 
tend to exploit regions where insufficient data is available to train the model and predictions 
which estimate too high rewards are made. This problem also occurs if the training data differs 
from the real environment and the model is estimated too accurate. This phenomenon is called 
overfitting and is due to the accumulation of predictions in model-based RL specifically prob-
lematic. All those problems have potential for huge failures and can be traced back to the num-
ber of assumptions and approximations. 

Model-based RL just got bigger attention in the last years and is less researched than model-
free RL in the moment. There are also attempts to combine model-free with model-based RL 
algorithms. [25–27] 
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4 Toolchain 

 

Figure 17: Toolchain of RL with ModelicaGym [28] 

Several tools are used to apply reinforcement learning for controlling tasks with Modelica mod-
els. For the basic RL utilization, it is required to have an agent and an environment (see Chapter 
1.3). There are various tools available in python for this application. When coupling RL with 
Modelica, the task of the Modelica model is to calculate the system state at each timestep ac-
cording to the performed action of the agent. This requires the ability to simulate the Modelica 
model in python which will be done by use of the FMI standard. The ModelicaGym toolbox 
enables this implementation of FMU in an OpenAI Gym environment. 
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4.1 OpenAI Gym Environment 
A RL environment by use of OpenAI Gym is more than just the world or the system model. It 
includes several definitions and functions used for interaction with the agent. OpenAI Gym is 
the most common python-library for environment creation in RL. This library provides a stand-
ardized interface which is very well developed and documented while also a heap of agents is 
available in python to interact with OpenAI Gym environments. The main tasks of an OpenAI 
Gym environment are: 

- Calculation of the current system state at the current time-step 
- Definition of the initialization state 
- Calculation of the reward based on the defined reward-function 
- Definition of the observation- and action-space 
- Definition of the episode termination 

This is done by defining a bunch of functions which then are executed in interaction with the 
agent. The program flow using the OpenAI Gym framework is as follows: 

 
Figure 18: Flow using OpenAI Gym Framework 
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4.2 Coupling Modelica-Models with OpenAI Gym Environment 

4.2.1 Modelica 

Modelica is an object-oriented programming language which is used for modelling physical 
systems. Modelica is an equation-based language which means that variables don’t get assigned 
causally, they are determined by solving equations. The mathematical background is that in a 
system of equations, it is possible to determine all variables if you have as many different equa-
tions as variables. Modelica has many reusable, uniform model-components available in the 
standard library which allow an efficient modelling of systems even with multiple domains. 
[29] 

4.2.2 Functional Mock-up Interface 

Functional mock-up interface defines a standard which serves as an interface for program ex-
change. The Modelica model is saved in a single Zip-file containing XML, binary- and C-Code. 
This is then called a functional mock-up unit (FMU). This FMU can be implemented for exam-
ple in a python program to execute simulations while reading and writing defined variables. 
The implementation of FMU in this work is done with the PyFMI library which is used in the 
ModelicaGym library. [30] 

4.2.3 ModelicaGym 

ModelicaGym is a toolbox which allows the interaction of an OpenAI Gym environment with 
FMU-files. It is basically a framework for an OpenAI Gym environment with implemented 
PyFMI functions. This allows the environment to get the current system state through simula-
tion of the Modelica model by executing the FMU with defined input (action & system param-
eter) and output (observation) variables. The ModelicaGym framework is based on multiple 
nested classes because it allows the use of different FMU-types which sometimes require dif-
ferent PyFMI functions. The UML chart on the next side provides a structural understanding of 
ModelicaGym used with Co-Simulation FMU version 2.0. 
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Figure 19: UML ModelicaGym 
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To use ModelicaGym, you have to define an environment class which extends the Modeli-
caGym classes which again extend the gym.Env class of OpenAI Gym. This environment class 
should define all the required functions described in Chapter 4.1 except the calculation of the 
system state. Those are at least the following functions: 

- _is_done: defines when the episode is terminated 
- _get_observation_space: defines the available observation-space 
- _get_action_space: defines the available action-space 
- _def_reward_policy: defines the reward-function 

Additionally, you must define the “config”-variables which provide certain needed information 
like the length of a time-step, the location of the FMU, the changeable system parameters, ac-
tion, and observation variables of the FMU. According to the ModelicaGym examples, those 
are defined in a separate class (DymolaCSEnvironment) inside the “__init__” function. This 
can also be done directly in the environment class. [28] 

4.3 Agent 
The agent includes the RL Algorithm and the policy (usually a neural network). To create an 
agent, there are mainly two possible frameworks, PyTorch and TensorFlow available, which 
are both very common. Further, many implementations based on those frameworks are availa-
ble which allow an easy and clean implementation of RL agents. In this work, the library stable-
baselines3 (SB3) was used which utilizes the PyTorch framework. 

The SB3 library provides a unified structure for different model-free RL algorithms which can 
be implemented very easily in the program to optimize a neural network which is also created 
by SB3. The library is made to interact with OpenAI Gym environments. It allows for several 
settings like defining the neural network structure, tuning RL algorithm parameters, defining 
the total timesteps to learn etc. It also supports Tensorboard to visualize different variables 
which are useful for insight and evaluation of the learning process. [31] 
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5 Determinants of RL Applications 
Many factors are influencing the learning behaviour and outcome of RL. The optimal settings 
vary for different applications while it is impossible to predict the actual influence of each set-
ting combination. Often, it is best to just experiment and go for intuition. This chapter will 
provide an understanding of the most important determinants. 

5.1 Environment design 

5.1.1 Reward Function 

Since the reward function defines the value of each system state, it is the main influence on the 
behaviour of the agent. It is important to understand the system and decide exactly which out-
come is desired, also considering a non-optimal agent. 

The most main contributions for reward function design are: 

- Immediate reward at each state / Reward just at certain states or at the end of the episode 
- Negative (punishment) / Positive rewards 
- Reward balancing 
- Reward scaling 

The following descriptions will include examples of reward function design. Those examples 
will be based on a fictive problem for a car which has to drive from position A to position B in 
a one-dimensional system. 

5.1.1.1 Immediate Reward vs. Selective Reward 

Usually, immediate rewards are easier to learn because the value calculation can be more pre-
cise for future states and fewer differences of the states. Immediate rewards specify a path for 
the learning process and allow the agent to get a near-optimal behaviour even when the exact 
desired behaviour is not achievable at this moment or not achievable at all. Immediate rewards 
also make the agent more predictable since the learning path and the value of each state is 
stronger defined. Still, the agent just tries to maximize the total reward which can include sac-
rificing immediate rewards in order to maximize the return at the end of the episode. Another 
advantage of immediate rewards is that the agent has a gradient to work with which again makes 
it easier to determine if it gets closer or further from the target behaviour. The ultimate imme-
diate reward definition is by a continuous reward function which is different for each system 
state. 

Example immediate continuous reward: “Reward = – (Distance from position B)” 

Selective rewards can be given just at certain states or at the end of the episode. The problem 
with selective rewards is that it can be much more difficult for the agent to estimate the episodic 
value based on the actions he takes. Imagine you must complete a task without knowing the 
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task and only be told “good” or “bad” sometimes. It is much more difficult to estimate which 
actions you took led to the desired outcome and which actions were hindering your success. It 
also can require a huge sample size to escape a local maximum which might not be at the best 
possible return. However, selective rewards can lead to a more unexpected behavioural outcome 
since the agent is completely unguided in its way to learn receiving the maximal return. [32, 
33] 

Example selective reward: “If (position = position B) → Reward = 100; else → Reward = 0” 

5.1.1.2 Negative vs Positive Rewards 

Reward functions can be designed using negative (punishment) or positive rewards. In theory, 
it makes no difference if the reward is positive or negative. If one reward is relatively higher 
than the other, the state is more desirable. However, in practice it can make a difference. For 
example, if the agent gets only negative rewards, it is motivated to end the episode as fast as 
possible since each step will lead to a lower return. If the agent gets only positive rewards, it is 
motivated to make an episode as long as possible since it will only increase the return with each 
timestep in the episode. Also, a mix of negative and positive rewards will sometimes make the 
agent actively avoid states with negative rewards and drive it to states with positive rewards. 
This can also hinder the agent from achieving the maximal possible return if negative rewards 
must be accepted to obtain a higher reward later. [33, 34] 

Example negative reward: “If (car crashes) → Reward = –1000” 

Example positive reward: “Reward = Distance from position A” 

A combination of those reward functions will make the agent strongly avoid crashes and can 
make it hard exploring that a crash leads to a higher total reward than just stopping if a crash is 
inevitable to keep driving away from position A. 

5.1.1.3 Reward balancing and scaling 

The example above leads to the importance of reward balancing and scaling. Again, in theory 
the agent tries to maximize the total reward at the end of the episode. Reward balancing can 
change the optimal behaviour if rewards or punishments are in conflict to each other. If a crash 
must be avoided at any cost, the negative reward on a crash should be relatively big enough so 
that the positive reward can’t compensate it. It is also important to keep the non-optimal behav-
iour in mind which can be highly affected by different reward scaling. This points out the im-
portance of a good system understanding and a clear specification of the desired behaviour. 
Reward scaling can also make a difference on the learning behaviour learning since the gradient 
of the values is changed. This changes the update magnitude especially for gradient-based al-
gorithms. [32–34] 

Example reward scaling: “Reward = – (Distance from position B)3” 
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5.1.2 Episode Termination 

The definition of the episode termination indirectly affects the reward function since the total 
reward gets reset after each episode. This contributes to the behaviour of the agent. As stated 
before, when giving negative rewards, the agent might try to end the episode as quickly as 
possible to avoid accumulating lots of negative rewards. Correspondingly, when giving only 
positive rewards, the agent might try to never end the episode since it can accumulate more 
positive rewards that way. 

The episode termination is usually based on the following categories: 

- Reaching a pre-set number of timesteps 
- System is out of specification 
- Task is completed 

The definition must be chosen based on the desired behaviour of the agent while trying to un-
derstand the complete agent’s motivation. Usually, at episode termination, a reward or punish-
ment for that specific state is implemented. The definition of the episode termination must be 
matched with the definition of the reward function. For example, if the episode is terminated 
after completing a certain task including a reward, but the reward at each timestep until com-
pleting the task is always zero, the agent is not motivated to complete the task as fast as possible 
since it doesn’t affect the return. The same episode termination definition with a negative re-
ward each timestep however motivates the agent to complete the task as fast as possible. 

For controlling tasks, it is often beneficial to add a small negative reward on episode termination 
to prevent the agent from intentionally reaching that state in training without exploring the sys-
tem. [32] 

5.1.3 Observation- & Action-Space 

In principle, the observation- and action-space are fixed by the process. They are essentially 
used to predefine the inputs and outputs of the neural network. More input neurons in a neuronal 
network can lead to overfitting and prevent generalization. Based on that, the number of obser-
vations should be considered when creating an environment. More observations are not always 
preferable, especially if the agent is trained on a slightly different system than it is applied 
afterwards. The individual variables in the observation-space should be defined as good as pos-
sible on the possible values. If each observation is predefined to have a possible value between 
-infinity and infinity even though this isn’t the actual case, the discretization of the neural net-
work might not be efficient. The action-space of course must define the possible or desired 
range based on the system while deviations can also lead to inefficiency. 

Using some algorithms, it can be beneficial to normalize the action- and observation-space var-
iables and then rescale them later. In the stable-baselines3 library, some continuous RL-algo-
rithms (e.g. PPO) rely on a gaussian distribution initially centred at 0 with a standard deviation 
of 1. In this case, if the action space is different, it will mostly lead to very low or saturated 
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actions. Algorithms like TD3 or DDPG rescale the output to fit the action-space. In this case, a 
normalization isn’t needed. [35] 

5.1.4 Timestep 

The timestep defines how much time passes between each step of the agent, hence how often 
the agent gets a new observation and can change its action. A physical process is always con-
tinuous which makes this an important factor. A smaller timestep lets the agent do more precise 
actions and adapt faster to disturbances or imperfection. Usually, a smaller timestep is prefera-
ble but in real systems, it is limited by the hardware speed. This must be considered when 
learning with a system model and applying the agent to a real system. A smaller timestep also 
increases the training time if the system is inert since each simulation interval can only change 
the system state a smaller amount, then by using a bigger timestep. 

5.1.5 Randomness 

Sometimes it is beneficial to add randomness to the environment. This can include random 
disturbances, random initial states, or random target states. Random initial and target states can 
force the agent to explore states which otherwise would not be explored. The use of this is 
dependent on the requirements of the agent. Generally, the learning conditions should be as 
similar as possible to the applying conditions. Otherwise, the agent can learn certain patterns 
and leave other states or dynamics completely unexplored. 

5.2 Agent design 
An agent in deep RL contains two components, the RL algorithm, and the neural network. The 
purpose of deep reinforcement learning is to parametrize one or multiple neural networks by 
use of the RL algorithm and the information provided by the environment. Changing those two 
components has an essential impact on the outcome. This chapter will provide a general over-
view of important differences designing those components. 

5.2.1 Neural Network design 

As stated before, an agent can contain multiple neural networks. In stable-baselines3 (SB3), 
often two neural networks are used which have different purposes. 

One neural network always contains the target policy and is called ‘actor’. The other neural 
network is called ‘critic’ which determines the value or Q-value of each state. 

Multiple settings can be made for a neural network. The overall functionality must be decided 
first. For controlling tasks, almost always multilayer perceptron (MLP) networks are used 
which are feedforward neural networks. This is the basic method of neural networks which is 
explained in chapter 1.5.1. Using another method, e.g. CNN, RNN, changes the outcome 
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drastically. Those other possibilities are not further explained here due to the rare use in 
controlling tasks. 

5.2.1.1 Network Architecture 

When in use of the SB3 library, on-policy algorithms have a 
neural network with some, all or no layers shared between 
the actor and critic. So, it essentially creates not two but one 
neural network which can calculate an estimation of the value 
(critic) and the action (actor) based on the current observa-
tion. Sharing a neural network can sometimes improve or 
simplify the optimization of itself. Off-policy algorithms al-
ways need two different neural networks for the actor and 
critic to prevent issues with target and behaviour policy. 

The number of hidden layers and the number of neurons in each hidden layer describe the ar-
chitecture of a neural network. To estimate which settings work best for the current application, 
it is best to try different approaches and choose the best. To begin, it is best to look at other 
applications which successfully trained a neural network on a similar problem and start from 
there. 

In theory, each function can be represented with a neural network using one hidden layer. In 
practice, a NN with more hidden layers usually is better in generalizing the problem than a 
network with less hidden layers but more neurons in each layer. Also, just using some layers 
with less neurons forces the NN to generalize the problem at a certain place of the function. 
The number of overall neurons should always be enough to represent the problem in the desired 
accuracy. Based on that, a neural network must be bigger if the problem is more complex and 
should have more neurons in each layer if less generalization is required. 

Using different architectures for actor and critic can be beneficial if different behaviours are 
desired concerning generalization and complexity. For example, if the controlling task is very 
easy but the importance lays in finding the optimal path in the MDP, the NN of the critic should 
be bigger than the actor. [36] 

5.2.1.2 Activation Function 

The activation function describes the function type used in each neuron. This can also be 
changed but with the use of SB3 it is best to keep the default because it is matched to the 
algorithm. Using other activation functions can cause errors like ‘out of bounds’ etc. and should 
be handled carefully. [37] 

5.2.2 RL-Algorithm 

The RL algorithm is used to parametrize the neural network. Using different algorithms changes 
the learning behaviour and the outcome if an optimal solution of the problem is not found. The 

Figure 20 Neural Network 
with Shared Layer for On-Pol-
icy Algorithms 
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decision which RL algorithm to use depends on if you want to use model-based or model-free 
algorithms. If using model-free algorithms, the main decision lays by using on-policy or off-
policy algorithms but also which method should be used. This contains for example Q-learning, 
policy gradient methods etc. Many advanced algorithms use multiple methods and combine 
multiple advantages. Mostly, advanced RL algorithms should work better for all problems but 
in some cases, it could be beneficial to use a basic RL-algorithm for a basic problem. The dif-
ferences of on-policy and off-policy algorithms are described in chapter 3. In theory, on-policy 
algorithms should converge in a less optimal but more consistent solution while off-policy al-
gorithms are better in finding the actual best solution. 

5.2.2.1 RL Algorithm Parameters 

RL algorithms use different parameters which must be declared. Those parameters change the 
learning behaviour of the agent. Important parameters are the total timesteps (learning dura-
tion), learning rate, update rate, and the noise. 

The total timesteps define how long the algorithms optimizes the policy. In general, a longer 
learning duration leads to a better agent. However, it must be paid attention to overfitting which 
can worsen the agent especially if the training and test system slightly differs. The required 
learning duration highly varies on different system complexities as well as the environment and 
agent settings. To estimate a good learning duration, it should be looked at convergence of 
certain variables (see Chapter 6.2). The agent can also be tested at different learning durations 
to compare its performance. 

The learning rate defines how hard the networks are updated if a better solution is found. A 
higher learning rate updates the networks more immediately while a lower learning rate needs 
the same discovery to happen more often before the neural network is completely adjusted to 
it. The learning rate can also be a function of the current progress. This parameter can be set in 
all reinforcement learning algorithms of SB3. 

The update rate contains a set of multiple parameters which all describe how often the neural 
networks are updated. This can include the general training frequency, the policy update delay 
and the learning start point. Those parameters can be used to collect more information about 
the environment before updating the neural networks which is useful if one action may be bad 
immediately but beneficial in the future. The training frequency decides the update rate of the 
critic and actor while the policy update delay describes the delay of the actor being updated 
with regards of the training frequency. The designation of those parameters changes for differ-
ent algorithms and can be read in the documentation of SB3. [38] 
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6 Evaluation of Neural Network Learning 
There are two main possibilities to evaluate the quality of the neural network learned. The first 
is to apply the target policy in a testcase in order to estimate the overall return and to examine 
the agent behaviour. The other possibility is to analyze the evolution of some variables which 
are used in the learning process. Tensorboard is available for SB3 algorithms which provides 
those figures of important variables. 

6.1 Policy Evaluation with Testcase 
Most RL algorithms use exploration noise during training. That is why you need to create a 
separate testcase to evaluate the agent’s performance. 

The function ‘evaluate_policy’ in SB3 runs the target policy for several episodes and returns 
the average return with the standard deviation. This can be used to compare different agents 
and gives a good assessment how good the agent performs. Those values can also be compared 
to the maximal possible return based on the reward-function and the timesteps used. Although 
it must be kept in mind that the maximal possible return is often not possible to achieve with 
inert systems. 

With this function, it is also possible to activate the render-function if implemented in the en-
vironment. This can be used to visually assess the agent which can sometimes be the easiest 
and fastest way for a rough evaluation of a visualizable system. But still, a more accurate eval-
uation is only possible with numeric results. 

To receive the true quality of the agent, for deterministic systems (which Modelica models 
usually are), the agent should be set deterministic too. On default, some RL agents are stochastic 
which means that they don’t always take the same actions in the same states. This means that 
they don’t always take the best action even if they knew better. This can sometimes make a 
performance difference. 

An alternative for the evaluation after the agent has finished training is to frequently evaluate it 
during training. This can be done with the function ‘eval_callback’. This can be used to identify 
the agent performance at certain number of timesteps and determine the benefit of further train-
ing. The callback function also allows to save multiple model versions during the training pro-
gress which can be useful if the agent worsens at a certain point. [39, 40] 

6.2 Training Evaluation with Tensorboard 
During training with SB3 agents, certain variables are logged. Those variables differ with the 
algorithm because different variables are used. To understand the behaviour of those variables, 
some mathematical background must be known. This chapter will give an overview of some 
important variables to evaluate the performance of training. 
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To open Tensorboard, the command ‘tensorboard --logdir=location_of_the_logfolder’ must be 
run in cmd which creates a port in ‘http://localhost:6006’ which can be opened in the browser. 

The x-axis of the figures always shows the number of timesteps run in training while the y-axis 
shows the value of a certain variable. The exact definition of those variables can be read in the 
documentation of SB3 in the chapter ‘Logger’. [39] 

6.2.1 Mean Episode Reward 

The mean episode reward is logged for all algorithms in SB3. It shows the mean return obtained 
during the training session averaged over 100 episodes. [39] This value should increase over 
the number of timesteps in training. However, it is no problem if this value decreases on a short 
term. A short term decrease of this value can happen by virtue of the policy noise in training 
which is essential for learning. It can also momentarily decrease if the agent leaves a local 
maximum which sometimes requires a few more training timesteps to optimize its new ap-
proach. Another reason for short-term decrease can be caused by regularization methods (see 
Chapter 1.4.2.2) of the neural network optimization. 

This value doesn’t show the episode return of the target policy because for exploration in train-
ing, there is always a policy noise, or a complete different behavioural policy (for off-policy 
algorithms) applied. Therefore, the absolute values cannot exactly be compared with other al-
gorithms to evaluate the performance. However, it can be used to compare certain different 
settings of the same algorithm or to roughly assess the learning behaviour. A long term decrease 
of this value is usually a clear indication of overfitting. For algorithms which use policy opti-
mization, a convergence of this value indicates that the algorithm has stopped learning or cannot 
optimize any further. For off-policy algorithms which are purely based on Q-Learning, a con-
vergence of this value doesn’t imply that the target policy has reached its maximum. This is 
due to the fact that the behavioural policy can be completely different from the target policy 
and isn’t just a reflection of the target policy added with some noise or randomness (on-policy 
algorithms). So, algorithms which are purely based on Q-Learning can still be improving even 
though the mean episode reward in training has converged.  
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6.2.2 Loss 

A neural network is trained by using an optimization process. This requires a cost-function 
which can be minimized. This cost-function represents the error between the prediction and a 
perfect model (in this context, model describes the neural network) and is called loss-function 
while the actual value of this function is called loss (see chapter 1.4.2.1). 

It is important to keep in mind that this loss function can be defined in many ways. That is why 
the desired behaviour can only be known if the mathematical background is understood. For 
basic actor-critic methods using temporal difference, the losses are usually defined the follow-
ing way: 

𝛿 = 𝑅𝑡 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) 

𝐶𝑟𝑖𝑡𝑖𝑐 𝑙𝑜𝑠𝑠 = 𝛿2 

𝐴𝑐𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 = 𝛿 ⋅ ln 𝜋(𝐴𝑡|𝑆𝑡) 

Again, the actor describes the policy network while the critic describes the value network. 

In this work, the definitions of the loss functions will not be discussed any further due to its 
complexity and diversity. However, those definitions can already give an understanding why 
the evolution of the actor and critic loss can be completely different while also desired behav-
iours of different loss-definitions can change completely. 

One basic way to use the loss values for evaluation of the training process is to look for con-
vergence. No matter what definition the loss values have, a convergence of the loss always 
means that the neural network isn’t changing much anymore. Further, if a loss value for exam-
ple constantly keeps decreasing and then starts increasing again, it can indicate a decline of the 
neural network for example due to overfitting. The figures of the loss values along with the 
mean episode reward during training can give a good estimation of the training process. If all 
those values converge, the training should be terminated because it shouldn’t improve anymore 
after this. It can also indicate if the training process was run too long if some of those values 
start changing directions over many timesteps. [41, 42] 

6.2.2.1 Loss Observations on TD3 Algorithm 

The empiric perception of the loss values during the experiments has yield that for the TD3 
algorithm, a desirable behaviour of the loss values is a constant decrease of the actor loss and a 
constant slight increase of the critic loss. 

A large immediate increase of the critic loss indicated an escape of a local maximum or over-
fitting. Often, the actor loss increased over some timesteps after the large increase of the critic 
loss which indicates that the actor network must be adjusted to the new approach explored with 
the critic network. This increase of the actor loss will mostly lead to a short term decrease of 
the episodic reward when the actor network is not adjusted properly yet. If the actor loss does 
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not again start to decrease after some timesteps, the critic network might be overfitted and train-
ing should be stopped.  

In the following graphs, the blue lines will show an example of an agent stuck in a local maxi-
mum. The critic loss is very low while the actor loss also converged immediately. The mean 
episodic reward shows that the agent was stuck in swinging the pendulum around consistently. 

Or orange lines show an algorithm which was learning good and around 1.2M timesteps, the 
actor loss started rising which resulted to a decrease of the mean episodic reward. The critic 
loss started highly increasing at that point which indicates in combination with the other graphs 
that the network has overfitted. 

   
  

Figure 21: Actor Loss Figure 22: Critic Loss 

Figure 23: Mean Episodic Reward 
during Training 
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7 Showcase Preparation Process 
For collection of experiences and demonstration purposes, a showcase was created during the 
process of this work. The creation of the eventual showcase was broken down in small individ-
ual steps which provided the required knowledge about the whole process. 

As a first step, some premade environments from the OpenAI Gym library were used to provide 
some experience about the basic reinforcement learning process and the agent libraries.  

In the second step, a custom environment purely based on OpenAI Gym was created and ap-
plied (Appendix B). This environment behaviour was defined by a linear function which had to 
be learned by the agent. The linear function was: 𝑠𝑡𝑎𝑡𝑒 = 14.097 ⋅ 𝑎𝑐𝑡𝑖𝑜𝑛 − 0.004. In addi-
tion, a random varying target system state had to be achieved based on the system behaviour 
and the actions taken. The goal of this work step was to provide an understanding of beneficial 
environment definition. The main cognizance was that the target state must be provided in the 
observation space if it is randomly varying. If the target state is always the same, it is enough 
to implement it in the reward function. This is because a random target state can logically not 
be predicted by the agent while a consistent target state (or target state progression over the 
episode) can be implicitly learned via the reward function because the highest reward is pro-
vided exactly at the target state at the current timestep. 

In the third step, a Modelica system model was implemented with the use of the ModelicaGym 
library. To break down the step, first an FMU was simulated in python by use of the PyFMI 
library and the according functions which are used in ModelicaGym (Appendix C). This as-
sured the functioning of the FMU simulation and foreclosed failures of this cause. The utilized 
Modelica system model was based on the same transition function as the custom environment 
used in the second step. The system depicted the flow of water through a valve to receive a 
certain mass flow. No inertia was included in the system which made the resulting mass flow 
just a linear dependency of the valve opening. 

The RL parameters of the system were: 

- Observation-space: current mass flow (controlled variable), target mass flow (setpoint) 
- Action-space: valve opening (manipulated variable) 
- Reward-function: if (current mass flow = target mass flow ± 0.5) → positive Reward 

else → negative Reward 
- Episode termination: at simulation time = 5s 

To apply this system for RL, an environment based on ModeliaGym and the above stated func-
tions was created. The environment code is provided in appendix D. 
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After successfully controlling this system with the RL agent, a disturbance was included with 
a second valve which was randomly closed between a valve opening of 0.8 and 1. The Modelica 
model looks as follows: 

 

Figure 24: Modelica Model with Noise for the ModelicaGym Testcase 

The evaluation of the system was done by looking at the evaluation return which should have 
been the maximal possible return since the noise was small enough to be balanced with the 
target tolerance. This was achieved perfectly after a training time of about 10 minutes to one 
hour depending on the algorithm used. The following graph shows the evaluation returns during 
training by use of the TD3 algorithm. 

The two little spikes with a lower than maximal return at the end are because of the noise, which 
doesn’t always allow a perfect system state. 

Figure 25: Mean Episodic Reward at Eval-
uation during Training 
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8 Showcase Double Pendulum 
The main showcase is a system of a double pendulum. The system was chosen because it had 
some avails for this purpose as a showcase. A system model of a double pendulum is already 
available on the Modelica standard library which could easily be used as a basis. Using the 
system from the Modelica standard library ensured that the system behaviour physically makes 
sense without any additional validation effort. This system is highly sensible and non-linear 
which makes it a fairly hard controlling task. Additionally, due to the defined goal, it is not 
possible to perform a linearization on this system for the controller design. With basic controller 
design techniques, this system would not be controllable. However, an advanced state controller 
(e.g., LQR) should still be able to do the same task as shown here. This system was also con-
sidered challenging for RL which allowed a good comparison between different settings re-
garding the functionality and results. 

8.1 System 
The system is modelled as follows with Modelica: 

 

Figure 26: Modelica Model used for the Showcase 
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Compared to the Modelica standard library system, the torque applied to the first joint and all 
the sensors had to be added. All the angles, angle velocities and the height of the rods are meas-
ured. The angle accelerations are not measured and must be estimated by the agent. The initial-
ization angles can be changed in python but for simplification, the pendulum start point was 
always at a resting downward position. The damping of the joints is set at a realistic small value. 

8.1.1 Goal 

The controlling goal is to swing up the pendulum as fast as possible to an upward position and 
balance it at this position until the end of the episode. Different reward functions are possible 
to define this goal, such as definitions with the help of the measured rod angles or with the rod 
heights. 

8.2 Experiments for Settings  
Different approaches were tested to train the RL agent. For a systematic investigation, first the 
main influencing factors were considered to systematically apply the best settings and create a 
functioning agent. They can be grouped in environment, RL-algorithm, and neural network 
settings. 

Environment RL-Algorithm Neuronal Network 

Reward function Algorithm-type Number of hidden layers 

Initialization state Total learning timesteps Number of neurons 

Episode termination Action-noise Architecture 

Observation-space Update rate (training frequency) Actor / Critic difference 

Action-space Learning rate Activation function 

Timestep Steps before learning starts  

Following settings were fixed in all attempts: 

- Initialization state: resting downward position 
- Episode termination: at t = 30 sec 
- Observation-space: given by the system model, angle velocities at ± infinity 
- Action-space: ± 200 Nm torque 
- Update rate (training frequency): 1024 steps 
- Steps before learning starts: 20000 steps 
- Actor / Critic neuronal network: same network architecture 
- Activation function of neurons: tanh-function 

Those settings were chosen based on research of other applications with adaptation and delib-
eration on the present system. 
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To roughly compare the performance of different settings, the mean episodic reward during 
training was watched. This doesn’t give an exact assessment of the learned model, but it is 
suitable to compare the different learning behaviours and to estimate the eventual evaluation 
performance. In addition, the behaviour was visually assessed using the learned agent. The total 
learning timesteps were always at 500’000 steps for the first attempts. This took about 2.5 hours 
to train each model. 

Two different learning algorithms were tested on the system. Only model-free RL was tried out 
in the showcase for simplicity reasons. The tested algorithms were TD3 and PPO. TD3 is an 
advanced off-policy algorithm combining Q-learning and policy optimization. It is the direct 
successor of DDPG which again is a modification of DQN to be applied on a continuous action-
space. PPO is an advanced on-policy algorithm which is based on the principle of A2C and 
TRPO. Those algorithms were chosen because they represent the most developed applications 
of on-policy and off-policy algorithms. 

8.2.1 TD3 (Off-Policy) Algorithm 

8.2.1.1 Timestep 

First, two different timesteps of 0.01 sec and 0.005 sec 
were tested with the same neural network (3 hidden lay-
ers with each 64 neurons). The result was clear that 0.005 
sec timestep was better. It must be kept in mind that the 
possible episodic reward with a timestep of 0.01 sec is 
3000 while the possible episodic reward with a timestep 
of 0.05 sec is 6000 because one episode contains twice 
as much timesteps, and the reward is given at each 
timestep. In later test cases, it revealed that a timestep of 
0.01 sec was again good with the use of a different neural 
network architecture (2 hidden layers with each 192 neu-
rons). 

8.2.1.2 Network architecture 

The network architecture was varied at the number of hid-
den layers and the number of neurons in each hidden 
layer. The following notation will be used from now on 
to describe the neural network architecture: 64x3 NN → 
neural network with 3 hidden layers and 64 neurons in 
each layer. A neural network with more hidden layers and 
less neurons in each layer seems to learn faster but also 
converge faster while a network with less layers and more 
neurons per layer seems to be still learning a lot at 

Figure 27:  
Orange: 0.005s timestep,  
Blue: 0.01s timestep 

Figure 28: Orange: 64x3NN,  
Blue: 64x5NN, Red: 192x2NN 
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500’000 timesteps. The experimental differences in this testcase however were not very signif-
icant. Due to the gradient of the episodic reward at the end, it was considered that less hidden 
layers could perform better. Also, the theoretical knowledge that more hidden layers are better 
at generalizing, which is not particularly wanted in this system because it is highly sensitive, 
reinforced that feeling. 

8.2.1.3 Action-noise 

The action-noise adds a probability to the actions taken 
based on a gaussian distribution. The standard deviation (𝜎) 
changes the probabilities to take further deviating actions 
then calculated by the policy. For this test, a 192x2 NN and 
a timestep of 0.005 sec was used. As seen in the graph, the 
higher standard deviation of the action noise allowed for 
faster learning at the beginning due to harder exploration. 
Although, it could be hard to explore the equilibrium state 
of the pendulum in the upright position because the action 
noise might always put it in a state in which the pendulum 
will be forced to lose balance. 

This phenomenon has shown in a test with a timestep of 0.01 
sec, a 192x2 NN and an action-noise 𝜎=0.01. The higher ac-
tion-noise combined with the changed network architecture 
allowed the agent to learn much better at the timestep of 0.01 
sec. Although, the learning seemed to converge at a rela-
tively high episodic reward. In visual evaluation with help 
of the animation, it is apparent that the agent is not able to 
balance the pendulum at the upright position. This might be 
because of the problem stated above, that the system is very 
sensible, and the higher action-noise disturb the balance 
point too much. A higher action-noise seems to be better at 
the start but worse at the end of the learning progress. 

Figure 29: Red: 𝜎 = 0.005,  
Pink: 𝜎 = 0.01 

Figure 30:  
Blue: 𝜎=0.005 (64x3NN),  
Green: 𝜎 =0.01 (192x2NN) 
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8.2.2 PPO (On-Policy) Algorithm 

When in use of the PPO-Algorithm, it is very important that 
the action-space is normalized between the values ± 1. 
Otherwise, the algorithm didn’t learn at all when interact-
ing with this system. The explanation of that is given at 
chapter 5.1.3. When using the TD3 algorithm, this normal-
ization is done automatically by the agent. Similar ap-
proaches as described above were applied on PPO. How-
ever, all settings resulted in a much worse outcome com-
pared to the TD3 algorithm. The graph shows a few PPO 
results of the mean episodic reward compared to the TD3 
result (green line). It is also well visible that the on-policy 
algorithm (PPO) often converges faster than the off-policy algorithm (TD3) but the optimal 
behaviour is less likely achieved. This agrees with the theory stated in chapter 3.1.2. Not all 
experiment results are described in this chapter because all the results were much worse than 
those achieved with TD3 algorithm. 

8.3 Result 
Based on the experiment cognition, a promising agent was trained for more timesteps. The first 
attempt was with the TD3 algorithm by using 0.005 sec timestep and a 192x2 NN with an 
action-noise 𝜎=0.005. The evaluation was done during learning with an evaluation callback to 
estimate the real episodic reward each 50’000 timesteps. The agent got significantly worse at 
1.6 Mio timesteps, why training was stopped at this point. The extreme worsening at this point 
was probably because the algorithm has overfitted the critic network (value function) and esti-
mated a too good reward at certain states which were not beneficial. This is also noticeable at 
the critic loss which made big jumps in the end. This indicates that the real value calculation 
with temporal difference has changed a lot compared to the value estimation of the critic net-
work. However, the agent was still not able to balance the pendulum at the upright position.  

 

Figure 34: Critic Loss 

 

Figure 31:  
Green: TD3-Algorithm,  
Others: PPO-Algorithm 

Figure 32: Mean Episodic 
Reward at Training 

Figure 33: Mean Episodic 
Reward at Evaluation 
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In previous experiments it was also noticeable that one problem was that the agent sometimes 
got stuck in a local maximum by consistently turning the pendulum around. This will always 
result in a total reward of zero because the reward function was defined by: reward = height of 
second rod, which after all will be equalized by the positive and negative values. To avoid this 
problem and force the agent to learn at the desired state, the reward function was slightly 
changed to: 

 

This reward function gave a higher penalty if the pendulum is at the downward position and 
should also eliminate the local maximum of a consistent swinging pendulum. It was expected 
that the agent will be able to learn longer at the relatively good state which it already has reached 
without worsening too early. 

The following application was done with the new reward function, a timestep of 0.01 sec and a 
lower action-noise 𝜎 = 0.003. The timestep was adjusted because it was expected that the higher 
timestep allowed for twice as fast learning due to the damping and because earlier experiments 
showed that it should also be possible to train the agent with this setting. The action-noise was 
lowered because it should allow the agent to optimize better at the upward position of the pen-
dulum without too much disturbance. The slower learning progress expected with the smaller 
action-noise should be equalized with the bigger timestep. 

The agent result was finally able to balance the pendulum at the upward position. As hoped, 
overfitting at later timesteps was no problem anymore with the new reward function. The ren-
dered pendulum is shown in the following pictures. 

  

Figure 35: Pendulum at Start 
Position 

Figure 36: Pendulum Swin-
ging Up 

Figure 37: Pendulum at Tar-
get Position 
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The evolution of the training and evaluation returns are visible in the following graphs: 

 

The following graphs show the actions taken at each timestep, the height of the second rod and 
the resulting rewards at each timestep over the whole episode: 

 

 

 

 

 

 

 

 

Figure 38: Mean Episodic Reward at Eval-
uation 

Figure 39: Mean Episodic Reward at 
Training 

Figure 40: Actions each Timestep 

Figure 41: Rewards each Timestep Figure 42: Heights of the Second Rod each 
Timestep 
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It is appearant that the agent changed very often between the maximal and minimal possible 
torque instead of choosing the exact right torque at each state. This indicates that the timestep 
could possibly be set even bigger which will evenautlly force the agent to learn a more 
continous instead of a nearly discrete behaviour between the maximal and minimal torque at 
the upright balancing point. 

It is also well visible how the adjusted reward function shifted the negative rewards by -1. This 
eliminated the problem of having a local maximum at a constant swinging pendulum. The 
controlling speed was not investigated any futher but it seems pretty fast with less than two 
seconds to reach a balancing upright position. 

It must be mentioned that the determined agent settings might not be the best anymore since 
the environment definition has changed by way of the reward function. However, due to lack 
of time and a satisfying result, no further tries were made after this. 

8.3.1.1  Evaluation with varied System Properties 

To be a good controller, the agent should also be able to perform well with disturbances or a 
slightly changing system. The trained agent was tested on the same system with doubled and 
halved damping in the joints. This could represent the wear of the bearings which gets bigger 
at the time. Since the agent doesn’t train anymore and only uses the premade policy, it could 
also represent certain outer disturbances applied to the system. However, the agent was not able 
to control the system in that slight varied case. This is because the agent only observes the 
angles and angle velocities but to describe the complete state of the system, the angle accelera-
tion is crucial too. Therefore, to be able to control a system with disturbances or changes, either 
the acceleration or the time must be provided in the observation-space. This would allow for a 
complete description of the current state and should make the agents performance independent 
on outer influences. A varied timestep had the same impact on the agent’s performance since 
one action of the agent has a much different impact on the system this way which is not repre-
sented in the policy.  



 

49 

 

Conclusion and Outlook 
Reinforcement learning for controlling tasks can definitely be beneficial for complex systems. 
Eventually, the main advantage is that a neural network can be trained efficiently which allows 
the usage of a very complex transfer function. Also due to the use of reinforcement learning, it 
is not required to have the same system understanding compared to using traditional controller 
design techniques. However, a fundamental system understanding is still required to setup the 
environment and the agent. The big disadvantage of reinforcement learning is that the system 
behaviour can only be influenced indirectly, and that the behaviour of the controller cannot be 
completely comprehended due to its complexity. For critical applications, this can be very un-
favourable. An advantage of reinforcement learning is that it not only allows for complex trans-
fer functions, but it also finds the best behaviour itself to reach the desired goal. If the desired 
goal can be defined exactly but the desired controller behaviour is hard to specify, reinforce-
ment learning is well suited. For simple applications, reinforcement learning is not very bene-
ficial since it still uses a lot of effort to create the setup. The main time-consuming tasks are 
finding beneficial settings of the environment and the agent. Due to its complexity and effects 
on each other, even with a good understanding of the topic, it is required to test different set-
tings. Because of the long training computation times, the creation of a good agent needs a lot 
of time. 

Combining reinforcement learning with Modelica models works very well with help of the 
ModelicaGym library. The use of Modelica models allows the use of a complex system model 
in training with relatively low effort. This enables training in a pure virtual environment which 
can shorten the training time compared to training on a real time process. 

The purpose of this work was to gain first experiences with reinforcement learning for control-
ling of physical systems. Further condition was to implement the simulation of Modelica system 
models to train and evaluate the agent. For experimentation and demonstration, a showcase had 
to be created. Those objectives were reached within this work. Much important basic 
knowledge was investigated and documented during the working process. The creation of the 
showcase facilitated the fundamental understanding of model-free reinforcement learning. It 
gave an insight of some libraries which simplify the application, and it also provided a first use 
case to get a feeling of beneficial environment and agent definitions. In all applications, it ap-
peared that off-policy algorithms seemed to be promising for physical controlling tasks. 

Nevertheless, a lot of future investigations are needed to get a holistic understanding of the 
whole application with its possibilities and limits. Sensible future tasks are described in the 
following sections. 

For a viable utilization of reinforcement learning, a standardized procedure should be defined. 
To allow the creation of such a procedure, systematic investigations for beneficial settings in 
different use cases must be made. This includes environment and agent research. The first in-
vestigations should be about the reward-function combined with the definition of the episode 



 

50 

 

termination. This should provide a better feeling of the according behaviour of the agent just 
by adjusting the environment. It would also be interesting to know which observation-spaces 
work best. Are more observations always better or is it sometimes better to have fewer obser-
vations and prevent overfitting and too complex neural networks?  

The next investigations could be about the agent choice and settings. This includes questions 
about the best algorithm choice and settings for physical control systems. Also, a better under-
standing about neural network architectures for actor and critic should be available to start the 
design process from a better standpoint. This should also be based on a physical control system 
which encloses the whole problem. To complete this topic, investigations on model-based al-
gorithms should be made and compared to model-free algorithms. Especially since model-
based reinforcement learning seems promising for robotics and automation. 

Further, a procedure for agent behaviour testing and understanding after the training should be 
defined. This procedure should be able to ensure the desired behaviour of the agent which is 
especially important for real-world problems which might be critical applications. Also, it must 
be investigated how the agent or neural network can be implemented advantageous in a real-
world controller for a real application. When creating such a controller, the timestep must be 
adjusted to the hardware speed.   

After a better understanding of the whole subject, with different libraries and approaches tested, 
a better comparison to conventional controlling can be made and profitable cases for applica-
tions with reinforcement learning can be identified. 

For me personally, this work gave a very interesting insight of reinforcement learning which is 
increasingly getting more attention nowadays. I think this will be an important topic in near 
future and it seems a very promising approach for applying artificial intelligence to control 
technology. 
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Appendix A: Showcase Python Code 

A.1 Environment 
# specify working directory for library import 

import sys 

from os import path 

sys.path.append(".") 

 

# ModelicaGym 

from modelicagym.environment import FMI2CSEnv 

from gym import spaces 

from cmath import inf 

import logging 

import numpy as np 

 

# rendering 

import pygame 

from pygame import gfxdraw 

from numpy import cos, pi, sin 

 

# logger definition 

logger = logging.getLogger(__name__) 

 

# Environment definition based on OpenAI Gym framework 

 

class Pendulum_env: 

 

# defining the episode termination 

     

    def _is_done(self): 

 

        if self.stop >=30: 

            done = True 

        else: 

            done = False 

        return done 

 

# defining the action-space (used in modelica_base_env / __init__) 

 

    def _get_action_space(self): 

 

        return spaces.Box(low = -200, high = 200, shape = (1,), dtype = "float32") 

 

# defining the observation-space (used in modelica_base_env / __init__) 

 

    def _get_observation_space(self): 

 

        return spaces.Box(low=np.array([-np.pi, -np.pi, -inf, -inf, -0.5, -1]), 

high=np.array([np.pi, np.pi, inf, inf, 0.5, 1]), dtype= "float32") 

         

# refering to the step function of ModelicaGym 

 

    def step(self, action): 

 

        return super().step(action) 

 

# refering to the reset function of ModelicaGym 

 

    def reset(self): 
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        return super().reset() 

 

# defining the reward-function 

     

    def _reward_policy(self): 

 

        angle1, angle2, anglevelocity1, anglevelocity2, position1, position2 = self.state 

 

        logger.debug("angle1: {0}, angle2: {1}, anglevelocity1: {2}, anglevelocity2: {3}, 

position1 {4}, position2 {5}".format(angle1, angle2, anglevelocity1, anglevelocity2, 

position1, position2)) 

 

        reward = position2 

 

        if position2 < 0: 

            reward = reward - 1 

 

        return reward 

 

# rendering the environment with pygame 

     

    def render(self, mode="human"): 

        FPS = 300 

        SCREEN_DIM = 700   

        LINK_LENGTH_1 = 0.5  # [m] 

        LINK_LENGTH_2 = 0.5  # [m] 

 

        if self.screen is None: 

            pygame.init() 

            pygame.display.init() 

            self.screen = pygame.display.set_mode((SCREEN_DIM, SCREEN_DIM)) 

         

        if self.clock is None: 

            self.clock = pygame.time.Clock() 

 

        self.surf = pygame.Surface((SCREEN_DIM, SCREEN_DIM)) 

        self.surf.fill((51, 0, 102)) 

        s = self.state 

 

        bound = LINK_LENGTH_1 + LINK_LENGTH_2 + 0.2  # 2.2 for default 

        scale = SCREEN_DIM / (bound * 2) 

        offset = SCREEN_DIM / 2 

 

        if s is None: 

            return None 

 

        p1 = [ 

            -LINK_LENGTH_1 * cos(s[0]+pi/2) * scale, 

            LINK_LENGTH_1 * sin(s[0]+pi/2) * scale, 

        ] 

 

        p2 = [ 

            p1[0] - LINK_LENGTH_2 * cos(s[1]+pi/2) * scale, 

            p1[1] + LINK_LENGTH_2 * sin(s[0] + s[1]+pi/2) * scale, 

        ] 

 

        xys = np.array([[0, 0], p1, p2])[:, ::-1] 

        thetas = [s[0], s[0]+s[1]] 

        link_lengths = [LINK_LENGTH_1 * scale, LINK_LENGTH_2 * scale] 

 

        for ((x, y), th, llen) in zip(xys, thetas, link_lengths): 
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            x = x + offset 

            y = y + offset 

            l, r, t, b = 0, llen, 0.05 * scale, -0.05 * scale 

            coords = [(l, b), (l, t), (r, t), (r, b)] 

            transformed_coords = [] 

            for coord in coords: 

                coord = pygame.math.Vector2(coord).rotate_rad(th) 

                coord = (coord[0] + x, coord[1] + y) 

                transformed_coords.append(coord) 

            gfxdraw.aapolygon(self.surf, transformed_coords, (51, 102, 0)) 

            gfxdraw.filled_polygon(self.surf, transformed_coords, (204, 102, 0)) 

 

            gfxdraw.aacircle(self.surf, int(x), int(y), int(0.083 * scale), (225, 225, 225)) 

            gfxdraw.filled_circle( 

                self.surf, int(x), int(y), int(0.08 * scale), (0, 0, 0) 

            ) 

 

        self.surf = pygame.transform.flip(self.surf, False, True) 

        self.screen.blit(self.surf, (0, 0)) 

        if mode == "human": 

            pygame.event.pump() 

            self.clock.tick(FPS) 

            pygame.display.flip() 

 

        if mode == "rgb_array": 

            return np.transpose( 

                np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2) 

            ) 

        else: 

            return self.isopen 

 

# closing the pygame window after rendering 

 

    def close(self): 

 

        if self.screen is not None: 

            pygame.display.quit() 

            pygame.quit() 

            self.isopen = False 

 

# main environment class with ModelicaGym  

 

class DymolaCSPendulumEnv(Pendulum_env, FMI2CSEnv): 

 

# defining the ModelicaGym config-variables 

 

    def __init__(self, 

                 initangle1, 

                 initangle2,  

                 time_step, 

                 positive_reward, 

                 negative_reward, 

                 log_level, 

                 path): 

 

        logger.setLevel(log_level) 

 

        config = { 

            'model_input_names': ['torque'], 

            'model_output_names': ['angle1', 'angle2', 'anglevelocity1', 'anglevelocity2', 

'position1', 'position2'], 

            'model_parameters': {'initangle1': initangle1, 'initangle2': initangle2}, 
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            'initial_state': (0, 0), 

            'time_step': time_step, 

            'positive_reward': positive_reward, 

            'negative_reward': negative_reward, 

            'path' : path 

        } 

 

        super().__init__(path, config, log_level) 

A.2 Model Training 
# OpenAI Gym 

import gym 

from gym.envs.registration import register 

 

# ModelicaGym 

from Pendulum_environment import DymolaCSPendulumEnv 

import os 

import numpy as np 

 

# Agent (SB3) 

from stable_baselines3 import A2C, PPO, DDPG, TD3 

from stable_baselines3.common.noise import NormalActionNoise 

from stable_baselines3.common.callbacks import EvalCallback, CheckpointCallback, CallbackList 

 

# setting the config variables for environment definition 

config = { 

        'time_step' : 0.01,  

        'initangle1' : -np.pi/2, 

        'initangle2' : 0,    

        'positive_reward' : 1, 

        'negative_reward' : -1, 

        'log_level' : 4, 

        'path': r"C:\Users\Tim\switchdrive\BAT\Modelica\DoublePendulum1ms.fmu" 

} 

 

# creating the OpenAI Gym environment based on environment class 

env_name = "DoublePendulum-v0" 

 

register( 

    id = env_name, 

    entry_point = 'Pendulum:DymolaCSPendulumEnv', 

    kwargs=config 

) 

 

env = gym.make(env_name) 

eval_env = gym.make(env_name) 

 

#defining saving paths 

log_path = os.path.join('Training', 'DoublePendulum_Logs', 

'Model16_TD3_10ms_192x2NN_1500k_sigma0003') 

model_path = os.path.join('Training', 'DoublePendulum_Models', 

'Model16_TD3_10ms_192x2NN_1500k_sigma0003') 

 

# action-noise for off-policy algorithms 

n_actions = env.action_space.shape[-1] 

action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.03 * np.ones(n_actions)) 

 

# defining agent callbacks while training (checkpoint_callback saves model every n timesteps, 

eval_callback evaluates model every n timesteps with seperate environment and saves the best 

model) 
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checkpoint_callback = CheckpointCallback(save_freq=50000, save_path=os.path.join('Training', 

'DoublePendulum_Logs', 'CheckpointCallback_Model16'), 

                                         name_prefix='checkpoint') 

 

eval_callback = EvalCallback(eval_env, best_model_save_path=os.path.join('Training', 

'DoublePendulum_Logs', 'EvalCallback_Model16'), 

                             log_path=os.path.join('Training', 'DoublePendulum_Logs', 

'EvalCallback_Model16'), eval_freq=50000, 

                             deterministic=True, render=False) 

 

callback = CallbackList([checkpoint_callback, eval_callback]) 

 

# defining agent neural network architecture 

policy_kwargs = dict(net_arch=[288, 288]) 

 

# defining agent model 

model = TD3('MlpPolicy', env, verbose=1, policy_kwargs=policy_kwargs, train_freq=1024, 

action_noise=action_noise, learning_starts=20000, learning_rate=0.003, 

tensorboard_log=log_path) 

# training the agent 

model.learn(total_timesteps=1500000, callback=callback) 

# saving the agent model after training 

model.save(model_path) 

 

# testing the environment with random action and obervation sample (deactivate agent 

functions!) 

""" 

print("\n\nAction Space: ") 

print(env.action_space) 

print("\nObservation Space: ") 

print(env.observation_space) 

print("\n\n") 

 

print(env.action_space.sample()) 

print(env.observation_space.sample()) 

""" 

# environment test and rendering with random actions (deactivate agent functions!) 

""" 

episodes = 1 

for episode in range(1, episodes+1): 

    state = env.reset() 

    done = False 

    score = 0  

     

    while not done: 

        env.render() 

        action = env.action_space.sample() 

        n_state, reward, done, info = env.step(action) 

        score+=reward 

    print('Episode:{} Score:{}'.format(episode, score)) 

    env.render() 

env.close() 

""" 

 

# view tensorboard log with cmd-command: tensorboard --logdir=logfile_path 

A.3 Model Testing 
# OpenAI Gym 

import gym 

from gym.envs.registration import register 
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# ModelicaGym 

from Pendulum_environment import DymolaCSPendulumEnv 

import os 

import numpy as np 

 

# Agent (SB3) 

from stable_baselines3 import A2C, PPO, DDPG, TD3 

from stable_baselines3.common.evaluation import evaluate_policy 

 

# setting the config variables for environment definition 

config = { 

        'time_step' : 0.01, 

        'initangle1' : -np.pi/2, 

        'initangle2' : 0,   

        'positive_reward' : 1, 

        'negative_reward' : -1, 

        'log_level' : 4, 

        'path': r"C:\Users\Tim\switchdrive\BAT\Modelica\DoublePendulum03.fmu" 

} 

 

# creating the OpenAI Gym environment based on environment class 

env_name = "DoublePendulum-v0" 

 

register( 

    id = env_name, 

    entry_point = 'Pendulum:DymolaCSPendulumEnv', 

    kwargs=config 

) 

 

env = gym.make(env_name) 

 

# Loading Model 

model_path = os.path.join('Training', 'DoublePendulum_Logs', 'EvalCallback_Model16', 

'best_model') 

 

model = TD3.load(model_path, env) 

 

# Testing Model 

print(evaluate_policy(model, env, n_eval_episodes = 1, deterministic=True, 

render=True))      # returns (mean_reward, std_reward) 

 

# get action, state and reward values each simulation step for plotting (deactivate "Testing 

Model (evaluate_policy)") 

""" 

obs = env.reset() 

actionvalues = [] 

position2values = [] 

rewardvalues =[] 

actionhalf1 = [] 

position2half1 = [] 

rewardhalf1 = [] 

actionhalf2 = [] 

position2half2 = [] 

rewardhalf2 = [] 

for i in range(3001): 

    action, _states = model.predict(obs, deterministic=True) 

    obs, rewards, dones, info = env.step(action) 

    action = round(action[0], 2) 

    rewards = round(rewards, 2) 

    height = round(obs[5], 2) 

    actionvalues.append(action) 
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    position2values.append(height) 

    rewardvalues.append(rewards) 

# not all variables can be printed out at once 

for i in range(0, 1500): 

    actionhalf1.append(actionvalues[i]) 

    position2half1.append(position2values[i]) 

    rewardhalf1.append(rewardvalues[i]) 

for i in range(1500, 3001): 

    actionhalf2.append(actionvalues[i]) 

    position2half2.append(position2values[i]) 

    rewardhalf2.append(rewardvalues[i]) 

print("\n\nrewards 1:\n", rewardhalf1) 

print("\n\nrewards 2:\n", rewardhalf2) 

print("\n\nactions 1:\n", actionhalf1) 

print("\n\nactions 2:\n", actionhalf2) 

print("\n\nstates 1:\n", position2half1) 

print("\n\nstates 2:\n", position2half2) 

""" 

 

A.4 ModelicaGym changes 
To reset the starting position of the pendulum after each episode, the file modelica_base_env 
from ModelicaGym must be slightly changed at the following function definition: 

 
    def _set_init_parameter(self): 

        """ 

        Sets initial parameters of a model. 

 

        :return: environment 

        """ 

        # modelparameters for DoublePendulum Environment 

        initangle1 = -np.pi/2 

        initangle2 = 0 

        modelparameters = initangle1, initangle2 

 

        if self.model_parameters is not None: 

            self.model.set(list(self.model_parameters), 

                           list(modelparameters)) 

        return self 
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Appendix B: Pure Python Environment Code 
import gym 

from gym import Env 

from gym import spaces 

from gym import register 

import numpy as np 

from stable_baselines3 import A2C, PPO, DDPG 

from stable_baselines3.common.evaluation import evaluate_policy 

import os 

 

class CustomEnv(Env): 

 

    def __init__(self): 

 

        # defining action-space and observation-space     

        self.action_space = spaces.Box(low = np.array([-1]), high = np.array([1])) 

        self.observation_space = spaces.Box(low=np.array([0, 0]), high=np.array([14.097, 14])) 

 

        # set random target state 

        self.target = np.random.uniform(0, 14) 

        self.target_low = self.target-0.01 

        self.target_high = self.target+0.01 

 

        # setting simulation length 

        self.sim_length = 3 

 

        # init state 

        self.state = [0, self.target] 

         

    def step(self, action): 

 

        # calculating system state at current step 

        self.state = [14.097*action-0.0004, self.target] 

        self.obs, self.targetvalue = self.state 

         

        # updating current simulation length 

        self.sim_length -= 1  

 

        # reward-function 

        if self.obs >=self.target_low and self.obs <=self.target_high: 

            reward = 1 

        else:  

            reward = -1 

         

        # episode termination check 

        if self.sim_length <= 0:  

            done = True 

        else: 

            done = False 

         

        info = {} 

 

        print(self.state, reward) 

         

        return self.state, reward, done, info 

     

    def reset(self): 

        # reset simulation length 

        self.sim_length = 3 

 

        # set new random target state 
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        self.target = np.random.uniform(0, 14) 

        self.target_low = self.target-0.01 

        self.target_high = self.target+0.01 

 

        # reset system state 

        self.state = [0, self.target] 

 

        return self.state 

     

# defining environment without register 

env = CustomEnv() 

 

# setting log and model path 

log_path = os.path.join('Training', 'Logs') 

model_path = os.path.join('Training', 'Saved Models', 'DDPG_CustomEnv3') 

 

# training the agent 

model = DDPG('MlpPolicy', env, tensorboard_log=log_path, verbose = 1) 

model.learn(total_timesteps=100000) 

model.save(model_path) 

 

# testing the agent 

model = DDPG.load(model_path, env) 

print(evaluate_policy(model, env, n_eval_episodes=10)) 
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Appendix C: FMU Simulation Test with PyFMI Code 
import pyfmi 

from pyfmi import load_fmu 

import os 

 

# define path 

model_path = r"C:\Users\Tim\switchdrive\BAT\Modelica\Simplependulum.fmu" 

model_name = model_path.split(os.path.sep)[-1] 

 

# load model 

model = load_fmu(model_path) 

 

# set options 

opts = model.simulate_options()     # take all default options 

opts['ncp'] = 1                     # change number of communication/output points 

opts['initialize'] = False          # initialize model when model.simulate is executed 

 

# set initial values for input variables 

model.set("torque", 0) 

model.set("initangle", 3) 

 

# initialize model 

model.reset() 

model.setup_experiment(start_time = 0) 

model.initialize() 

 

# simulate model 

result = model.simulate(start_time = 0, final_time = 50, options=opts) 

 

# printing states for each ncp 

print(result['time']) 

print(result['angle']) 
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Appendix D: ModelicaGym Valve Environment Code 

D.1 Environment 
# specify working directory for library import 

import sys 

sys.path.append(".") 

 

# ModelicaGym 

import logging 

import numpy as np 

from gym import spaces 

from modelicagym.environment import FMI2CSEnv 

 

# logger definition 

logger = logging.getLogger(__name__) 

 

# Environment definition based on OpenAI Gym framework 

 

class MassflowValve_env: 

     

# defining the episode termination 

 

    def _is_done(self): 

 

        if self.stop >= 5: 

            done = True 

        else: 

            done = False 

        return done 

 

# defining the action-space (used in modelica_base_env / __init__) 

 

    def _get_action_space(self): 

 

        return spaces.Box(low = 0, high = 1, shape = (1,), dtype = "float32") 

 

# defining the observation-space (used in modelica_base_env / __init__) 

 

    def _get_observation_space(self): 

 

        return spaces.Box(low=np.array([0, 0]), high=np.array([14, 10]), dtype= "float32") 

         

# refering to the step function of ModelicaGym 

 

    def step(self, action): 

 

        return super().step(action) 

 

# refering to the reset function of ModelicaGym 

 

    def reset(self): 

 

        return super().reset() 

 

# defining the reward-function 

 

    def _reward_policy(self): 

 

        massflow, target = self.state 
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        target_low = target - 0.5 

        target_high = target + 0.5 

        logger.debug("massflow: {0}, target: {1}".format(massflow, target)) 

 

        if massflow >= target_low and massflow <= target_high: 

            reward = self.positive_reward 

 

        else:  

            reward = self.negative_reward 

 

        return reward 

 

# main environment class with ModelicaGym  

 

class DymolaCSMassflowEnv(MassflowValve_env, FMI2CSEnv): 

 

# defining the ModelicaGym config-variables 

 

    def __init__(self, 

                 target_input, 

                 noise,  

                 time_step, 

                 positive_reward, 

                 negative_reward, 

                 log_level, 

                 path=r"C:\Users\Tim\switchdrive\BAT\Modelica\Massflow_with_Valve_noise1"): 

 

        logger.setLevel(log_level) 

 

        target_input = np.random.uniform(0, 10) 

        noise = np.random.uniform(0.9, 1) 

 

        config = { 

            'model_input_names': ['valve_opening'], 

            'model_output_names': ['massflow', 'target'], 

            'model_parameters': {'target_input': target_input, 'noise': noise}, 

            'initial_state': (0, 0), 

            'time_step': time_step, 

            'positive_reward': positive_reward, 

            'negative_reward': negative_reward 

        } 

 

        super().__init__(path, config, log_level) 

D.2 Model Training 
# OpenAI Gym 

import gym 

from gym.envs.registration import register 

 

# ModelicaGym 

from MassflowValve_environment import DymolaCSMassflowEnv 

import os 

import numpy as np 

from Massflow_with_Valve.MassflowValve_environment import MassflowValve_env 

 

# Agent (SB3) 

from stable_baselines3 import A2C, PPO, DDPG, TD3 

from stable_baselines3.common.noise import NormalActionNoise 

from stable_baselines3.common.callbacks import EvalCallback 
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# initializing noise and target 

noise = np.random.uniform(0.9, 1) 

target_input = np.random.uniform(0, 10) 

 

# setting the config variables for environment definition 

config = { 

        'time_step' : 1, 

        'noise' : noise,  

        'target_input' : target_input, 

        'positive_reward' : 2, 

        'negative_reward' : -1, 

        'log_level' : 4, 

        'path': r"C:\Users\Tim\switchdrive\BAT\Modelica\Massflow_with_Valve_target_noise.fmu" 

} 

 

# creating the OpenAI Gym environment based on environment class 

env_name = "MassflowValve-v2" 

 

register( 

    id = env_name, 

    entry_point = 'Massflow_with_Valve:DymolaCSMassflowEnv', 

    kwargs=config 

) 

 

env = gym.make(env_name) 

eval_env = gym.make(env_name) 

 

#defining saving paths 

log_path = os.path.join('Training', 'Logs', 'TD3_MassflowValve_target_noise') 

model_path = os.path.join('Training', 'Saved Models', 'TD3_MassflowValve_target_noise') 

 

""" 

# For trying out the environment with random samples 

 

while not done: 

    action = env.action_space.sample() 

    n_state, reward, done, info = env.step([action]) 

    score += reward 

    print('Score:{}'.format(score)) 

 

""" 

# defining agent callback while training (eval_callback evaluates model every n timesteps with 

seperate environment and saves the best model) 

eval_callback = EvalCallback(eval_env, best_model_save_path=os.path.join('Training', 'Saved 

Models', 'TD3_MassflowValve_target_noise'), 

                             log_path=os.path.join('Training', 'Logs', 

'TD3_MassflowValve_target_noise'), eval_freq=100, n_eval_episodes=3, 

                             deterministic=True, render=False) 

 

# action-noise for off-policy algorithms 

n_actions = env.action_space.shape[-1] 

action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions)) 

 

# defining agent model 

model = TD3('MlpPolicy', env, verbose=1, action_noise=action_noise, tensorboard_log=log_path) 

# training the agent 

model.learn(total_timesteps=20000, callback = eval_callback) 

# saving the agent model after training 

model.save(model_path) 

 

# view tensorboard log with cmd-command: tensorboard --logdir=logfile_path 
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D.3 Model Testing 
# OpenAI Gym 

import gym 

from gym.envs.registration import register 

# ModelicaGym 

from MassflowValve_environment import DymolaCSMassflowEnv 

import os 

import numpy as np 

# Agent (SB3) 

from stable_baselines3 import A2C, PPO, DDPG, TD3 

from stable_baselines3.common.evaluation import evaluate_policy 

 

# initializing noise and target 

noise = np.random.uniform(0.9, 1) 

target_input = np.random.uniform(0, 10) 

 

# setting the config variables for environment definition 

config = { 

        'time_step' : 0.5, 

        'noise' : noise,  

        'target_input' : target_input, 

        'positive_reward' : 3, 

        'negative_reward' : -1, 

        'log_level' : 4, 

        'path': r"C:\Users\Tim\switchdrive\BAT\Modelica\Massflow_with_Valve_noise1.fmu" 

} 

 

# creating the OpenAI Gym environment based on environment class 

env_name = "MassflowValve-v1" 

 

register( 

    id = env_name, 

    entry_point = 'Massflow_with_Valve:DymolaCSMassflowEnv', 

    kwargs=config 

) 

 

env = gym.make(env_name) 

 

# Loading Model 

model_path = os.path.join('Training', 'Saved Models', 'TD3_MassflowValve_target_noise') 

 

model = TD3.load(model_path, env) 

 

# Testing Model 

print(evaluate_policy(model, env, n_eval_episodes = 10))      # returns (mean_reward, 

std_reward) 

D.4 ModelicaGym changes 
To reset the target value and the noise after each episode, the file modelica_base_env from 
ModelicaGym must be slightly changed at the following function definition: 

 
    def _set_init_parameter(self): 

        """ 

        Sets initial parameters of a model. 

 

        :return: environment 
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        """ 

        # modelparemters for MassflowValve Environment 

        target_input = np.random.uniform(0, 10) 

        noise = np.random.uniform(0.9, 1) 

        modelparameters = target_input, noise 

         

        if self.model_parameters is not None: 

            self.model.set(list(self.model_parameters), 

                           list(modelparameters)) 

        return self 

 

 

 


