Bachelor-Thesis an der Hochschule Luzern - Technik & Architektur

Titel Wettbewerbsanalyse und Entwurf Negrellisteg Zürich

Diplomandin/Diplomand Beqiri, Shpat

Bachelor-Studiengang Bachelor Bauingenieurwesen

Semester HS22

Dozentin/Dozent Dr. Gollob Stephan

Expertin/Experte Dr. Volkwein, Axel

Abstract Deutsch

Der Hauptbahnhof Zürich und sein Umfeld unterliegen einer starken Entwicklungsdynamik. Die aktuellen Verbindungsmöglichkeiten zwischen den Stadtkreisen 4 und 5 decken den heutigen und zukünftigen Bedarf nicht mehr. Deshalb sieht der kommunale Verkehrsrichtplan vor, die Stadtkreise 4 und 5 für den Langsamverkehr mit einer Brücke zu verbinden. Im Rahmen der Aufgabenstellung wurden das Projekt «Wurmloch» die Siegerprojekte «96» und «337939» aus den Wettbewerben 2011 und 2017 analysiert und systematisch miteinander verglichen. Aus den gewonnenen Erkenntnissen der Wettbewerbsanalyse wurde dann ein eigener Entwurf auf Stufe Vorprojekt erarbeitet. Der Entwurf «Schrägkabelbrücke» eignete sich aufgrund des klar ersichtlichen Kraftflusses und der interessanten Pylonenform am besten für die Weiterbearbeitung.

Abstract Englisch

The Zurich Main Station and its surroundings are subject to strong development dynamics. The current connection possibilities between districts 4 and 5 no longer meet current and future needs. For this reason, the municipal traffic guidance plan envisages connecting districts 4 and 5 for non-motorised traffic with a brigde. As part of the task, the "Wormhole" project and the winning projects "96" and "337939" from 2011 and 2017 competitions were analysed and systematically compared with each other. The insights gained from the competition analysis were then used to develop a separate design at the preliminary project level. The "stay cable bridge" design was the mist suitable for further work due to the clear visible flow of forces and the interesting pylon shape.

Ort, Datum Horw, 03.01.2023

© Shpat Begiri, Hochschule Luzern - Technik & Architektur

Negrellisteg – Zürich

Wettbewerbsanalyse und Entwurf

Wettbewerbsanalyse

Bachelor-Thesis HS22

Hochschule Luzern Technik und Architektur

Horw, 03. Januar 2023

Autor:
Shpat Beqiri
Eichenstrasse 17
6015 Luzern

Dozent:

Dr. Stephan Gollob

Experte:

Dr. Axel Volkwein

Inhaltsverzeichnis

1	Ein	leitung	3
	1.1	Ausgangslage	3
	1.2	Ziel der Arbeit	3
2	Ein	zelanalysen	4
	2.1	Projekt: 96 (Siegerprojekt 2017)	4
	2.1	.1 Eigenschaften	4
	2.1	.2 Tragwerkskonzept	6
	2.1	.3 Dauerhaftigkeit und konstruktive Durchbildung	7
	2.1	.4 Bauprozess	8
	2.2	Projekt: 337939 (Siegerprojekt 2011)	10
	2.2	.1 Eigenschaften	10
	2.2	.2 Tragwerkskonzept	11
	2.2	.3 Dauerhaftigkeit und konstruktive Durchbildung	12
	2.2	.4 Bauprozess	12
	2.3	Projekt: Wurmloch	13
	2.3	.1 Eigenschaften	13
	2.3	.2 Tragwerkskonzept	15
	2.3	.3 Dauerhaftigkeit und konstruktive Durchbildung	16
	2.3	.4 Bauprozess	16
3	Ge	genüberstellung: Projekt 1-3	18
	3.1	Tragwerkskonzept	18
	3.2	Dauerhaftigkeit und konstruktive Durchbildung	19
	3.3	Nachhaltigkeit	20
	3.4	Wirtschaftlichkeit	20
	3.5	Bauprozess	21
	3.6	Ästhetik	21
4	Daı	rstellung als Netzdiagramm und Fazit	22
5	Ver	rzeichnisse	23
	5.1	Literaturverzeichnis	23
	5.2	Tabellenverzeichnis	23
	5.3	Abbildungsverzeichnis	23
6	Anl	hang	24

1 Einleitung

1.1 Ausgangslage

Der Hauptbahnhof Zürich und sein Umfeld unterliegen einer starken Entwicklungsdynamik. Die aktuellen Verbindungsmöglichkeiten zwischen den Stadtkreisen 4 und 5 decken den heutigen und zukünftigen Bedarf nicht mehr. Deshalb sieht der kommunale Verkehrsrichtplan vor, die Stadtkreise 4 und 5 für den Langsamverkehr mit einer Brücke zu verbinden. Unter Einbindung des Tiefbauamtes Zürich wurden in den Jahren 2011 und 2017, im Auftrag der SBB, Projektwettbewerbe mit dem Ziel ausgelöst, eine wirtschaftliche Lösung für eine Fussgängerbrücke zu erhalten. Grund für den zweiten Wettbewerb war, dass es nach 2011 noch einige Parameteränderungen gab und das Siegerprojekt nicht mehr geeignet war. Für den Wettbewerb 2011 wurde eine Fussgänger- und Radwegbrücke verlangt, iedoch wurde diese Idee aus mehreren Gründen verworfen. Die Kosten wurden aufgrund der Fahrradrampen zu gross. Hinzu kommt, dass in den Rampenbereichen Grundstücke gekauft werden mussten, was die Kosten für das erste Siegerprojekt sprengte. Zudem gibt es momentan Pläne, einen alten Autobahntunnel unterhalb des Hauptbahnhofs für den Radverkehr umzunutzen. Aufgrund dessen wurde eine Radwegbrücke für den Negrellisteg obsolet. Mit diesen neuen Parametern wurde im Jahr 2017 ein neuer Wettbewerb gestartet, worin das Siegerprojekt «96» prämiert wurde.

Im Rahmen der Bachelor-Thesis HS22 an der Hochschule Luzern Technik und Architektur analysiert Shpat Beqiri drei Wettbewerbsprojekte. Hierfür werden zwei Projekte aus dem Wettbewerb 2017 und eines aus dem Wettbewerb 2011 ausgewählt. Die Projekte werden analysiert und systematisch miteinander verglichen. Die Bewertungsmethode basiert dabei auf den folgenden Kriterien: Tragwerkskonzept, Dauerhaftigkeit und konstruktive Durchbildung, Nachhaltigkeit, Wirtschaftlichkeit, Bauprozess und Ästhetik. Anschliessend werden sie mit einem Netzdiagramm gegenübergestellt und aus den ermittelten Wichtigkeiten die Rangfolge abgeleitet.

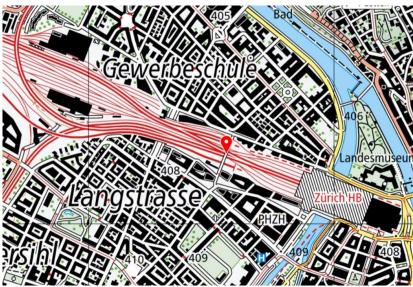


Abbildung 1: Situationsplan des Negrellistegs

1.2 Ziel der Arbeit

Ziel dieser Arbeit ist es, die Vor- und Nachteile der verschiedenen Projekte zu erkennen und diese miteinander zu vergleichen. Aus den gewonnenen Erkenntnissen dieser Wettbewerbsanalyse werden dann drei Entwürfe konzipiert.

2 Einzelanalysen

Im folgenden Kapitel werden drei Projekte einzeln analysiert. Die Wahl dieser drei Projekte ergibt sich durch die Aufgabenstellung, welche besagt, dass zwei Projekte aus dem Wettbewerb im Jahr 2017 und eins aus dem Jahr 2011 gewählt werden müssen. Für die Auswahl der Analyseprojekte sind dementsprechend die Siegerprojekte aus den Jahren 2011 und 2017 geeignet. Das dritte Projekt «Wurmloch» wird aufgrund des interessanten Bauprozesses und der Analogie zum Wurmloch analysiert.

2.1 Projekt: 96 (Siegerprojekt 2017)

Beim Projekt «96» (Abbildung 2) handelt es sich um eine Hohlkastenbrücke. Sie wurde im Jahr 2017 zur Weiterbearbeitung empfohlen und schliesslich auch realisiert.



Abbildung 2: Illustration Projekt "96"

2.1.1 Eigenschaften

Abbildung 3: Ansicht Projekt "96"

- Statisches System: Durchlaufträger (5-Feld-Träger)

Material: Baustahl S355

- Höhe: 9.00 m*

- Länge(n): 158.66 m (Gesamtlänge)

23.83 m - 10.93 m - 77.79 m - 11.11 m - 35.00 m

(von Etappe 1 bis 5 dargestellt, siehe Abb. 16)

- Max. Spannweite: 77.79 m - Fahrbahnbreite: 4.10 m

- Lagerung: Vier Stützen im Gleisbereich,

seitlich Treppenelemente

Projektspezifische Eigenschaften:

Breite Flansch: 4.40 m
Max. Höhe Steg: 1.81 m
Min. Höhe Steg: 0.30 m*

- Abmessungen Querschotten: 1.80 – 0.30 / 1.20 m ,t= - *

Abmessungen Querrippen: 1.60 / 0.30 m, t = - *

- Abmessungen Längsrippen: 120 / 20 mm*

^{*}Genaue Abmessungen sind aus den vorhandenen Plänen nicht ersichtlich.

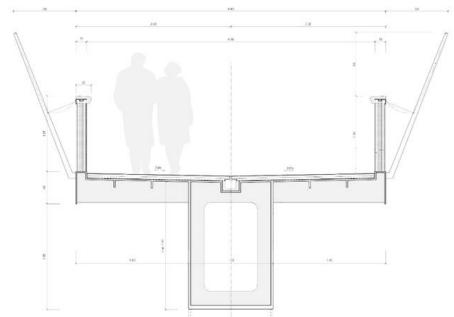
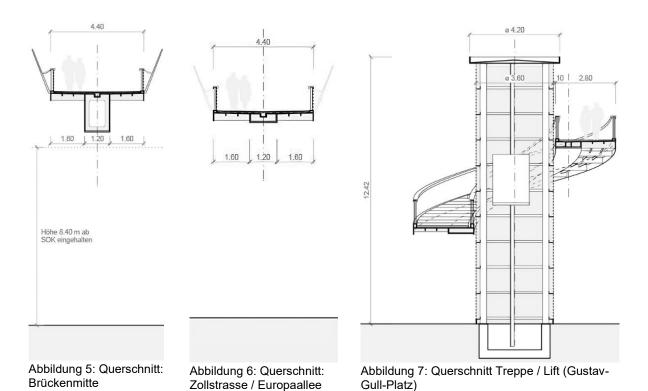



Abbildung 4: Vermasster Querschnitt

2.1.2 Tragwerkskonzept

Die Hohlkastenbrücke wird an sechs Punkten gelagert. So hat die Brücke für die vertikalen Lasten die Tragwirkung eines 5-Feld-Trägers. Durch die geschickte Lagerung im Gleisbereich kann die Spannweite stark minimiert werden. Den Verformungen in Feldmitte wird mit einem hohen Steg entgegengewirkt. Der hohe Steg wird zudem ins Entwässerungskonzept integriert, indem er das beidseitige Längsgefälle erzeugt. Der Brückenträger besteht aus fünf vorfabrizierten Hohlkastenelementen. Diese sind monolithisch miteinander verbunden. In den Elementen gibt es Querschotten (Abstände unbekannt) welche zur Aussteifung des Querschnitts beitragen. Zudem unterstützen sie die Abtragung der Lasten in Querrichtung und begrenzen das Beulfeld. Des Weiteren gibt es Querrippen (Abstand unbekannt) und vier Längsrippen (zwei pro Seite). Von den Längsrippen aus werden die lokalen Kräfte, beispielsweise durch ein Unterhaltsfahrzeug erzeugt, über Biegung zu den Querrippen geleitet. Die Querrippen leiten schliesslich die Kräfte in den Hohlkasten ein.

Die geringen horizontalen Kräfte in Brückenlängsrichtung können über die Schweissnähte in die Stützen abgeleitet werden. Schliesslich werden die Kräfte über Biegung in den Baugrund geleitet.

Die höheren horizontalen Kräfte in Brückenquerrichtung werden gleich wie die horizontalen Kräfte, über die Stützen in den Baugrund geleitet. Für diesen Fall können, durch die Form der Stützen und der Lagerungsbedingungen, grössere Kräfte aufgenommen werden. Die angeschweissten Treppen wirken wie zwei gefederte Auflager. So können mögliche Zwängungen aus der Temperaturdifferenz minimiert werden.

Kraftfluss

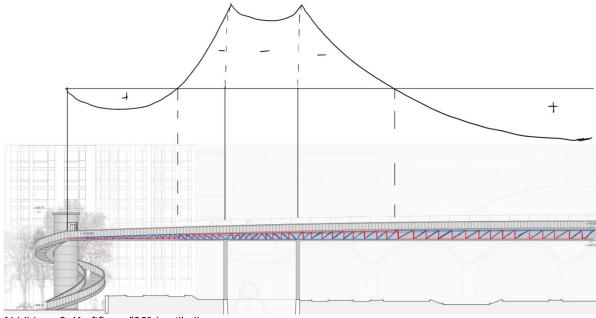


Abbildung 8: Kraftfluss: "96" (vertikal)

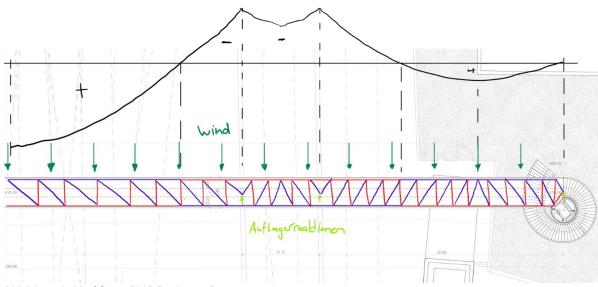


Abbildung 9: Kraftfluss: "96" (horizontal)

Legende:

2.1.3 Dauerhaftigkeit und konstruktive Durchbildung

Der Brückenträger besteht aus fünf vorfabrizierten Hohlkastenelementen. Diese sind komplett geschweisst und werden vor Ort miteinander verschweisst. Die vier Stützen werden oben mit dem Brückenträger verschweisst und unten mit einem Stahlschuh (siehe Anhang A) auf den verstärkten Rampenwänden aufgelagert. Die seitlichen Treppenelemente werden, wie der Rest der Brücke, an den Brückenträger geschweisst.

Schweissnähte gelten generell als ermüdungsgefährdet, jedoch sind sie ermüdungsresistenter als andere Anschlüsse (zum Beispiel Schraubverbindungen). Der Ermüdungsfall wird zudem noch durch Imperfektionen begünstigt. Dadurch dass die Elemente aber vorfabriziert sind, gibt es nur noch die vier Schweissnähte zwischen den jeweiligen Elementen, die von Imperfektionen betroffen sein können. Die angeschweissten Stützen am Hohlkasten ermöglichen eine Brücke ohne Brückenlager. Dies verringert die Wartungskosten und erhöht ausserdem die Dauerhaftigkeit. Um die Ermüdung in der Brücke zu minimieren, werden Schwingungstilger in die Hohlkasten eingebaut. Jedoch ist die Anzahl der Schwingungstilger nicht bekannt.

Um eine gute Entwässerung über beide Brückenenden zu ermöglichen, wurde ein Längsgefälle von 2 % gewählt. Darüber hinaus gibt es für die Entwässerung noch eine Rinne in der Fahrbahnmitte, die für eine sauberere Entwässerung der Brücke sorgt. Stark tausalzausgesetzte Bereiche wie Randabschlüsse, Geländer, Entwässerungsrinne und Vandalennetz werden zur Erhöhung der Korrosionsbeständigkeit in Edelstahl ausgeführt. Die restliche Brücke wird zur Erhöhung der Lebensdauer mit einem Korrosionsschutz versehen. Der Korrosionsschutztyp ist aus den Unterlagen nicht ersichtlich.

2.1.4 Bauprozess

Der Bauprozess des Projekts «96» ist in 13 Phasen gegliedert. Er beginnt mit der Vorbereitungsphase (Abbildung 10). In dieser werden die Schutztunnel, der Steg, die Montage- und Arbeitsplattformen aufgebaut. In der Phase 1 werden die Rampenwände verstärkt, sodass diese als Auflager für die Mittel- und Randfeldstützen fungieren können. Der Einbau der Hohlkastenelemente gelingt über den Gustav-Gull-Platz.

Zu Beginn der Bauphase 4 (Abbildung 13), wird die provisorische Abstützung auf Gleis C8, in einer oder mehreren Nachtsperren montiert. Danach beginnen die Einbau- und Schweissarbeiten die sich bis zur Phase 8 (Abbildung 16) erstrecken. In der Phase 9 (Abbildung 17) wird mit der Entfernung der provisorischen Abstützung das Gleis C8 wieder freigelegt.

Die Lastübertragung der Brücke wird mittels Verpressung zwischen Brückenträger und Stützen (zuerst Mittelfeld dann Randfeld) in der Bauphase 9 – 11 (Abbildung 17 und 18) realisiert. In den letzten beiden Phasen werden die Treppenaufgänge angeschlossen und der Lift montiert.

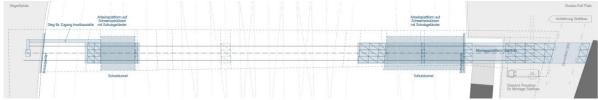


Abbildung 10: Bauphase 0: Installation Stahlbau, Schutzmassnahmen Bahn, Arbeitsbühne in erhöhter Lage

Abbildung 11: Bauphase 1: Installation Stahlbau, Schutzmassnahmen Bahn; Bauphase 2: Montage Stützen, Installation Vorschubelemente

Abbildung 12: Bauphase 3: Einbau Element 1 (L = 35 m) mit Vorbauschnabel (L = 5.00 m)

Abbildung 13: Bauphase 4: Montage provisorische Abstützung, Einbau Element 2, Schweissung an Element 1

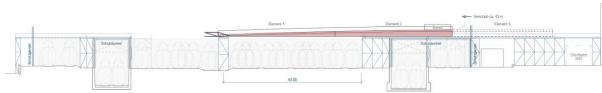


Abbildung 14: Bauphase 5: Verschub Elemente ca. 43 m, kritischer Bauzustand bei Auskragung 43 m

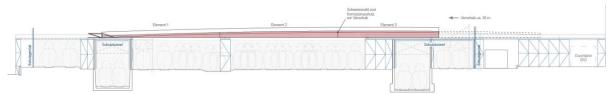


Abbildung 15: Bauphase 6: Einbau Element 3, Schweissung an Element 2, Verschub Elemente ca. 35 m

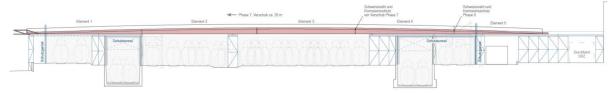


Abbildung 16: Bauphase 7: Einbau Element 4, Schweissung an Element 3, Verschub Elemente ca. 26 m Endlage Brücke Bauphase 8: Einbau Element 5, Schweissung an Element 4, Demontage Vorbauschnabel

Abbildung 17: Bauphase 9: Lastübertragung der Brücke mit Pressen auf die Stützen / Abbau Verschubelemente und einen Teil der provisorischen Abstützung; Bauphase 10: Brücke absenken, Verbinden Stützen Mittelfeld

Abbildung 18: Bauphase 11: Aufpressen / Vorspannen Stützen Randfeld, Verbindung Stützen Randfeld

Abbildung 19: Bauphase 12: Anschluss Treppenaufgänge; Bauphase 13: Montage Lift, Belagsarbeiten, Abbau Hilfs- und Schutzkonstruktionen

2.2 Projekt: 337939 (Siegerprojekt 2011)

Beim Projekt «337939» (Abbildung 20) handelt es sich um eine Rahmenbrücke. Sie gewann im Jahr 2011 den Wettbewerb und wurde schliesslich zur Weiterbearbeitung empfohlen. Ausserdem ist sie die einzige Fussgänger- und Radwegbrücke, die für diesen Bericht analysiert wird.

Abbildung 20: Illustration Projekt "337939"

2.2.1 Eigenschaften

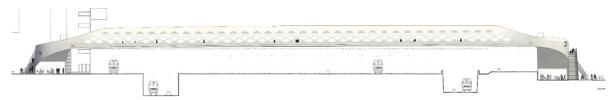


Abbildung 21: Ansicht Projekt "337939"

- Statisches System: Rahmen

- Material: Ultra Hochfester Faserbeton

- Höhe: 8.40 m*
- Länge(n): 160.00 m*
- Max. Spannweite: 160.00 m*
- Fahrbahnbreite: 4.50 m*

- Lagerung: keine im Gleisbereich, seitlich eingespannt

Projektspezifische Eigenschaften

Wandstärke: 20 cm*Lichte Höhe: 4.40 m*

^{*}Genaue Abmessungen sind aus den vorhandenen Plänen nicht ersichtlich.

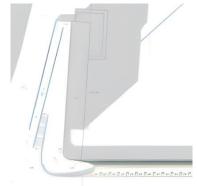


Abbildung 22: Aufsicht Rampenbauwerk

Abbildung 23: Perspektive im Negrellisteg

Abbildung 24: Querschnitt

2.2.2 Tragwerkskonzept

Die Brücke wird gemeinsam mit den Rampengebäuden als liegender Rahmen ausgebildet. So werden die Biegemomente in Feldmitte verkleinert, was eine stützenfreie Brückenkonstruktion ermöglicht. Die Tragwirkung des Brückenquerschnitts kann durch die Aussparungen als Fachwerkähnlich oder perforiertes Tragrohr betrachtet werden. Dadurch dass die Konstruktion lager- und fugenfrei ist, sind Zwängungen in der Brückenröhre möglich. Jedoch wird im Wettbewerb nicht auf diese Problematik eingegangen. Ausserdem wurde Aufgrund der Ästhetik die Brückenrohroberkante im Auflagerbereich verkürzt, wodurch sich der Querschnitt im massgebenden Eckpunkt noch weiter verkleinert hat.

Kraftfluss

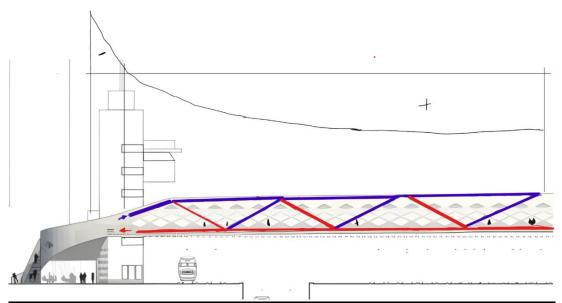


Abbildung 25: Kraftfluss "337939" (vertikal)

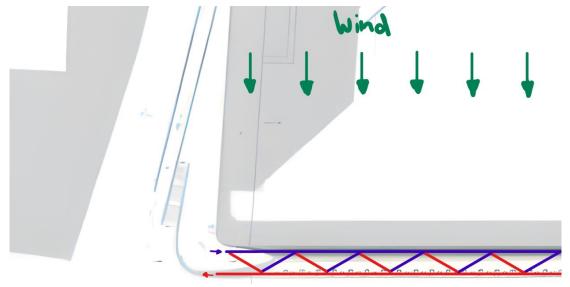


Abbildung 26: Kraftfluss "337939" (horizontal)

Legende:

2.2.3 Dauerhaftigkeit und konstruktive Durchbildung

Die Materialwahl der Brücke ist aus Sicht der Dauerhaftigkeit sehr gut. Gemäss Hi-Con, einem Entwickler von ultrahochfestem Beton (UHFB), beträgt die Lebensdauer des UHFB bei minimaler Wartung mehr als 100 Jahre. Hinzu kommt, dass das Material sehr Frost- und Tausalzbeständig ist, was für eine hohe Dauerhaftigkeit spricht. Das Material ist sehr leicht und ermöglicht durch die enorme Festigkeit auch die Realisierung von schlanken Bauteilen, was sich auch positiv auf den Bauprozess und die Wirtschaftlichkeit auswirkt. Aufgrund der grossen Spannweite und der fehlenden Abstützungen im Gleisfeld ist die Brücke hinsichtlich Schwingungen, ermüdungsgefährdet. Die Entwässerung der Brücke ist in den Plänen des Wettbewerbs nicht eindeutig erkenntlich. Einzig das beidseitige Gefälle im Brückenquerschnitt ist aus den Plänen erkennbar (siehe Abbildung 24).

2.2.4 Bauprozess

Der genaue Bauprozess ist in den Wettbewerbsunterlagen nicht vorhanden. Es ist lediglich die Angabe vorhanden, dass das Projekt «337939» mittels Taktschiebeverfahren realisiert wird. Dadurch ist es möglich, dass die Beeinträchtigung des Schienenverkehrs minimiert wird.

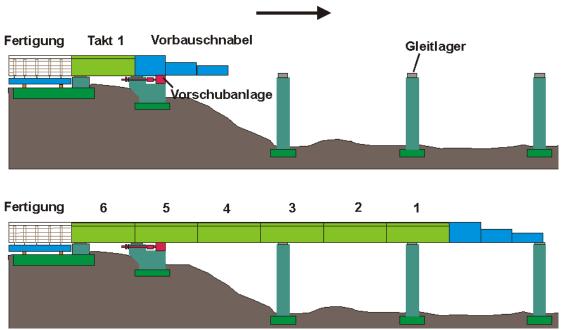


Abbildung 27: Taktschiebeverfahren

2.3 Projekt: Wurmloch

Beim Projekt «Wurmloch» (Abbildung 27) handelt es sich um eine Hängebrücke aus dem Wettbewerb vom Jahr 2017. Sie ist die einzige stützenfreie Brücke aus dem Wettbewerb 2017.

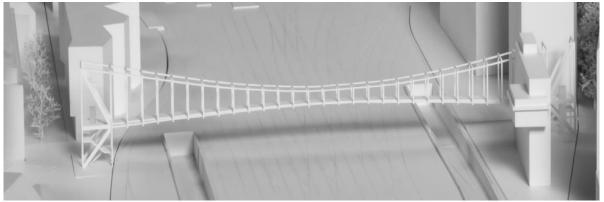


Abbildung 28: Illustration Projekt "Wurmloch"

2.3.1 Eigenschaften

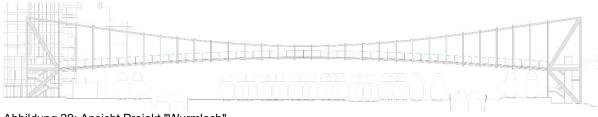


Abbildung 29: Ansicht Projekt "Wurmloch"

Statisches System: HängebrückeMaterial: Baustahl

Höhe: 11.90 m (Feldmitte)Länge(n): 164.70 m (Gesamtlänge)

- Max. Spannweite: 155.50 m - Fahrbahnbreite: 4.00 m

- Lagerung: keine im Gleisbereich,

seitlich zwei Fachwerkpylone (siehe Abbildung 29)

Projektspezifische Eigenschaften

- Höhe Pylone: 23.52 m

Breite Pylone: variabel, 7.90 m -7.70 m
 Abmessungen Rahmen: variabel (siehe Anhang A)
 Abmessungen Ober- / Untergurte: variabel (siehe Anhang A)

Abmessungen Längsrippen: 200 / 10 mm
 Dicke Fahrbahnblech: 12 mm
 Dicke Auflagerblech für Fahrbahn: 12 mm

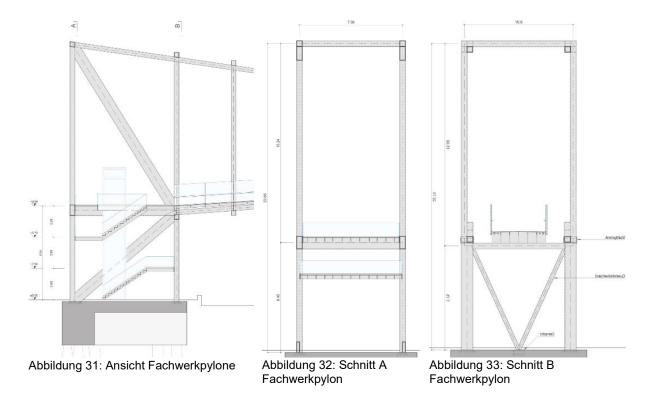
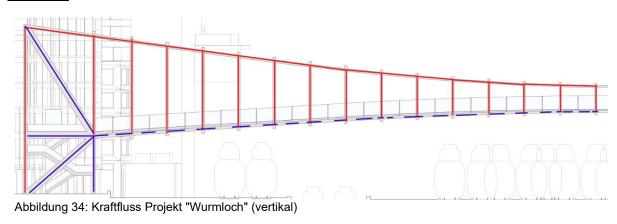



Abbildung 30: Querschnitt



2.3.2 Tragwerkskonzept

Das Wurmloch ist eine stützenfreie Hängebrücke. Hier werden die Rahmen an den Obergurten angeschweisst und wirken somit bei Normalbelastung wie eine Aufhängung. Diese Rahmen sind in diesem Tragwerk für den Abtrag der Fahrbahnlasten in die Obergurte zuständig. Da bei einer normalen Aufhängung die Profile in Schwingung geraten können, sind hier zwei Untergurte vorgesehen. Diese steifen das System aus und unterstützen zusätzlich den horizontalen Lastabtrag. Die Lasten aus den vier Gurten werden primär über Druck- und Zugkräfte in die Pylonen eingeleitet. Dort werden die Kräfte mithilfe der Fachwerkpylone in den Baugrund geleitet. Hier besteht jedoch das Risiko auf horizontale Verformungen der Pylonen. Diese sind für das Tragwerk problematisch, da schon kleine horizontale Verformungen grosse Deformationen und Zwängungen in der Hängestruktur hervorbringen.

Damit der lokale Lastabtrag trotz dünnem Fahrbahnblech gelingt, werden Quer- und Längsrippen unterhalb der Fahrbahn platziert. Die Querrippen leiten die Fahrbahnlasten über Biegung zu den Längsrippen. Diese leiten die Kräfte schliesslich zu den Rahmen.

Kraftfluss

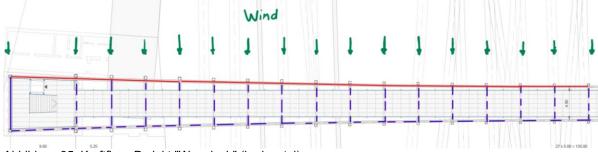


Abbildung 35: Kraftfluss Projekt "Wurmloch" (horizontal)

Legende:

2.3.3 Dauerhaftigkeit und konstruktive Durchbildung

Die Vierkantprofile und Verbindungspunkte sind alle verschweisst. Diese gelten in der Regel als ermüdungsgefährdet. Jedoch haben sie eine höhere Ermüdungsresistenz als andere Verbindungen im Stahlbau. Hier ergibt sich jedoch das Problem, dass durch die vielen Schweissarbeiten vor Ort mehr Imperfektionen möglich sind, welche den Ermüdungsfall begünstigen können.

Das Tragwerk ist sehr verformungsempfindlich. Schon kleine Verformungen der Pylone in horizontaler Richtung erzeugen grosse Deformationen und Spannungen in Brückenmitte. Dies wirkt sich negativ auf die Dauerhaftigkeit aus.

Die Brücke besitzt ein Längsgefälle von 6 %, was eine gute Entwässerung über beide Brückenenden ermöglicht. Lokal gibt es ein zweiseitiges 2 % Gefälle.

Über den Korrosionsschutz gibt es in den Wettbewerbsunterlagen keine Angaben.

2.3.4 Bauprozess

Der Bauprozess des «Wurmlochs» wird in fünf Bauphasen aufgeteilt. In der ersten Phase (Abbildung 36) werden die Fundamente und der untere Teil der Pylonen gebaut. Danach wird der Stahlbau bis zur Brückenmitte vertikal aufgebaut. Pro Etappe werden zwei Rahmen angeschweisst.

In der Bauphase 2 (Abbildung 37) beginnt die Absenkung der ersten Brückenhälfte seitens Gustav-Gull-Platz. Damit eine kontrollierte Absenkung möglich ist, werden Litzenheber (siehe Abbildung 37 links) verwendet. Nach der Absenkung wird die Brückenhälfte von Stütze(n) aufgefangen. Diese werden während Nachtsperren auf den Rampenwänden platziert. Die Bauphase 3 (Abbildung 38) verläuft identisch wie die Bauphase 2, nur dass zum Schluss dieser Bauphase die Ober- und Untergurte miteinander verschweisst werden. Anschliessend werden die Pylone in der Bauphase 4 (Abbildung 39) fertiggebaut und die Haltelitzen und Stützen zurückgebaut.

In der letzten Bauphase (Abbildung 40) wird die Brücke ausgerüstet. Dazu gehören Lifte, Treppen, Glasbrüstung und der Belag aus Epoxid- und Sandharz.

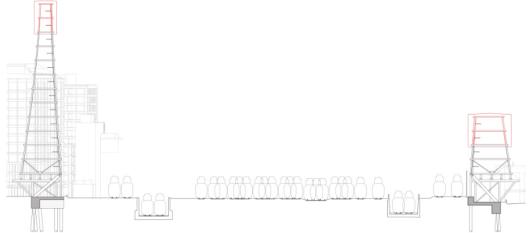


Abbildung 36: Bauphase 1: Stahlbaumontage

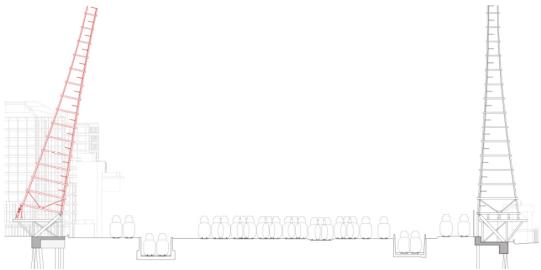


Abbildung 37: Bauphase 2: Absenkung I

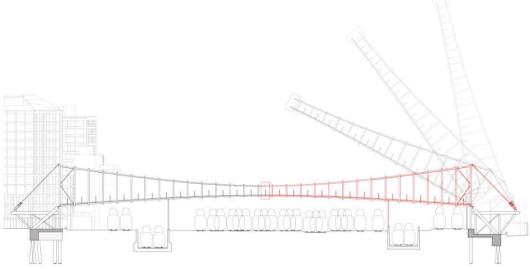


Abbildung 38: Bauphase 3: Absenkung II

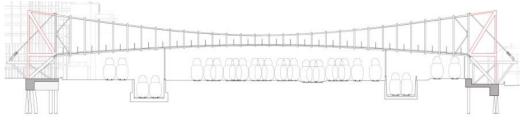


Abbildung 39: Bauphase 4: Stahlbau Pylone

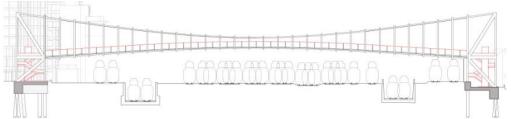


Abbildung 40: Bauphase 5: Ausrüstung

3 Gegenüberstellung: Projekt 1-3

Im folgenden Kapitel werden die drei analysierten Projekte auf ihr Tragwerkskonzept, Ästhetik, Bauprozess, konstruktive Durchbildung, Dauerhaftigkeit, Nachhaltigkeit und Wirtschaftlichkeit miteinander verglichen. Hierfür werden die Vor- und Nachteile der Projekte aufgelistet und anschliessend von 1 (sehr schlecht) bis 5 (sehr gut) bewertet.

3.1 Tragwerkskonzept

Tabelle 1: Vor- und Nachteile: Tragwerkskonzept

	96	337939	Wurmloch
Vorteile	- Sauberer Kraftfluss	- Stützenfrei	- Stützenfrei
	 Mehrere Abstützungen → mehr Sicherheit bei einem Anprall Keine / Wenig Zwängungen aufgrund von gefederten Treppenauflager Hoher Steg in Feldmitte erhöht die Biegesteifigkeit 	 Einspannung ermöglicht eine Verkleinerung des Feldmoments Hohe Querschnitts- höhe erhöht die Biegesteifigkeit der Brücke 	- Neigung der Ober- und Untergurte verbessert die Aufnahme von Windkräften - Aussteifung für Windkräfte mit den Rahmen
Nachteile	 Verstärkung der Rampenwände notwendig Stützen im Gleisfeld sind anprallgefährdet 	 Querschnitt verjüngt sich im Bereich der Einspannung Zwängungen 	- Grosse Horizontalkräfte in den Pylonen - Kraftfluss nicht immer eindeutig - Zwängungen

Bewertung:

Projekt «96»: 4.5 Projekt «337939»: 3.5 Projekt «Wurmloch»: 3.0

3.2 Dauerhaftigkeit und konstruktive Durchbildung

Tabelle 2: Vor- und Nachteile: Dauerhaftigkeit und konstruktive Durchbildung

Tabelle 2. VOI-	und Nachteile: Dauerhaftigkeit u 96		Wurmloch
174-7		337939	
Vorteile	- Sauberer Kraftfluss	- Minimale Wartung	- Verhält sich Steif
		aufgrund der	gegenüber Horizontalasten
	- Schweissverbindung	Material-auswahl	
			- Querschnitte schon definiert
	- Wenig Schweiss-	- Feuerfest	
	arbeiten vor Ort		- Schweissverbindungen
		- Fugen- und	
	- Vorfabrizierte	Lagerfrei	- Entwässerungskonzept
	Elemente		
	- Entwässerungs-		
	system		
	 Korrosionsgefährdete 		
	Bereiche in Edelstahl		
	- Schwingungstilger		
	- Keine Kunststofflager		
Nachteile	- Fehlende Angaben	- Schwingungen	- Grosse Horizontalkräfte die
	(Querschotten,		problematisch sein können
	Schwingungstilger,	- Fehlende	
	Längsrippen)	Angaben (Dicke,	- Verformungsempfindlich
	,	lichte Höhe,	-
		Perforation)	- Viele Schweissnähte vor
		,	Ort (Imperfektionen möglich)
		- Zwängungen evtl.	' '
		Problematisch	- Keine Angaben über
			Korrosionsschutz
		- Keine Angaben	
		über das	
		Entwässerungs-	
		system	
l			

Bewertung:

Projekt «96»:	4.5
Projekt «337939»:	4.0
Projekt «Wurmloch»:	3.5

3.3 Nachhaltigkeit

Tabelle 3: Vor- und Nachteile: Nachhaltigkeit

	96	337939	Wurmloch
Vorteile	- Stahl ist recycelbar	- Bis zu 50 % weniger Zement als gewöhnlicher	- Stahl ist recycelbar
	- Edelstahl ist recycelbar	Beton	- Korrosionsschutz erhöht die Lebensdauer
	- Korrosionsschutz erhöht die Lebensdauer	- Schlankere Elemente möglich	
	emont die Eesensdader	- Lange Lebensdauer	
		- Beton ist recycelbar	
Nachteile	- Kein nachwachsender Rohstoff	- Zementherstellung ist umweltschädlich	- Kein nachwachsender Rohstoff

Bewertung:

Projekt «96»: 4.5
Projekt «337939»: 4
Projekt «Wurmloch»: 4.5

3.4 Wirtschaftlichkeit

Tabelle 4: Vor- und Nachteile: Wirtschaftlichkeit

	96	337939	Wurmloch
Vorteile	- Geringe	- Geringe Wartungsarbeiten	- Geringe
	Wartungsarbeiten		Wartungsarbeiten
		- Wenig Unterhaltsdienst im	
		Winter	- Baukosten im
			mittleren Bereich
Nachteile	- Baukosten nicht	- Baukosten nicht angegeben	- Fenster müssen
	angegeben		geputzt werden
	Cohnogräumgung ist		Cohnooräumuungist
	- Schneeräumung ist		- Schneeräumung ist
	notwendig		notwendig

Bemerkung:

Für diesen Vergleich werden die Stahl- und Betonpreise aus dem Jahr 2017 betrachtet da die Preise (Stand Dezember 2022) unter der Wirtschaftskrise stark angestiegen sind.

Bewertung:

Projekt «96»: 4 Projekt «337939»: 3.5 Projekt «Wurmloch»: 4

3.5 Bauprozess

Tabelle 5: Vor- und Nachteile: Bauprozess

	96	337939	Wurmloch
Vorteile	Vorfabrizierte ElementeWenigSchweissarbeiten vor OrtEinfacher Bauprozess	- Taktschiebeverfahren ermöglicht theoretisch einen stützenfreien Bauprozess	 Fast keine Beeinträchtigung des Gleisfelds Keine Spezialtransporte nötig da alles vor Ort verschweisst wird
Nachteile	 Ein Gleis muss gesperrt werden Zugang zum Gleisfeld nur während Nachtsperren möglich Tunnelrampen müssen verstärkt werden. Elementbau nur bei der Europaallee möglich 	- Bauprozess nicht komplett durchdacht - Bau mittels Taktschiebeverfahren ohne Abstützung im Gleisfeld scheint unrealistisch	 Grosse Horizontalkräfte können problematisch sein Unklar ob die Rahmen vor Ort oder im Elementwerk verschweisst werden Komplexer Bauprozess aufgrund der vielen Schweissarbeiten vor Ort

Bewertung:

Projekt «96»: 3.5
Projekt «337939»: 3
Projekt «Wurmloch»: 4.5

3.6 Ästhetik

Tabelle 6: Vor- und Nachteile: Ästhetik

	96	337939	Wurmloch
Vorteile	- Schlankes Design	- Überdacht	- Verbundsicherheitsglas ermöglicht einen klaren
	- Wendeltreppen ermöglichen einen	- Sichtbeton passt ins Stadtbild	Durchblick aufs Gleisfeld
	fliessenden Auf- und Abstieg		- Rahmen und Pylone übernehmen die vertikalen Linien aus der Europaallee.
	- Farbe und Design passt zur Umgebung		Lillien aus dei Europaaliee.
Nachteile	- Vandalennetz stört die Aussicht	- Brückenträger wirkt sehr gross	- Pylone erscheinen sehr hoch
		- Rampenbauwerke sind gewaltig.	

Bewertung:

Projekt «96»: 4.5
Projekt «337939»: 3
Projekt «Wurmloch»: 4

4 Darstellung als Netzdiagramm und Fazit

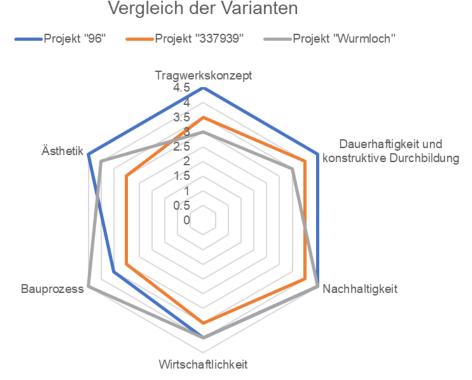


Abbildung 41: Vergleich der Varianten mit einem Netzdiagramm

Aus der Gegenüberstellung hat sich ergeben, dass das Siegerprojekt 2017 «96» am besten abschliesst. Das Projekt scheint am besten durchdacht zu sein und wurde auch dementsprechend bewertet. Auf dem zweiten Platz landete das Projekt «Wurmloch». Es konnte mit einem guten Bauprozess punkten, da es den Gleisverkehr kaum stört. Allerdings gibt es noch viel verbesserungspotential. Die Elemente könnten beispielsweise vorfabriziert werden, um die Gefahr von Schweissimperfektionen zu verringern, um so die Dauerhaftigkeit zu verbessern. Die Zwängungen müssten zwingend betrachtet werden da schon kleine horizontale Verformungen in den Pylonen zu grossen Deformationen in Feldmitte führen können. Darüber hinaus könnte das Längsgefälle optimiert werden, sodass die Begehung der Brücke angenehmer wird.

Das Siegerprojekt 2011 «337939» landet auf den letzten Platz. Dadurch dass die Brücke im Wettbewerb 2011 teilgenommen hat, und damals noch ganz andere Parameter galten, war die Bewertung der Ästhetik und Wirtschaftlichkeit eine schwierige. Beim Bauprozess hat dieses Projekt auch einige Punkte, verschenkt da der genaue Ablauf unklar ist. Es wird nur angegeben, dass die Brücke mit einem Taktschiebeverfahren gebaut wird, jedoch werden potenzielle Gleissperrungen im Bericht nicht erwähnt.

Zusammengefasst sind folgende Punkte für die Einarbeitung in die eigenen Entwürfe massgebend:

- Bauprozess klären (Innenstädtischer Bau, Gleisbeeinträchtigung)
- Nachvollziehbarer Kraftfluss (lokal und global)
- Zwängungen wenn möglich umgehen
- Stahlelemente wenn möglich im Elementwerk vorfabrizieren
- Stützen im Feld (Anprall, Stützen im Feld können und sollen auch für den Bauprozess genutzt werden)

5 Verzeichnisse

5.1 Literaturverzeichnis

hi-con. (2022). Von https://www.hi-con.com/de/warum-uhfb/#module3 abgerufen
Marti AG Bern. (27. November 2018). Von https://www.martibern.ch/de/Pages/News/Instandsetzung-Strassen%C3%BCberf%C3%BChrungBollodingen---UHFB.aspx abgerufen

Stahl Kompakt. (2022). Von https://www.stahl-kompakt.de/SK.Premium/Stahlpreisindex.aspx abgerufen

5.2 Tabellenverzeichnis

TABELLE 1: VOR- UND NACHTEILE: TRAGWERKSKONZEPT	18
TABELLE 2: VOR- UND NACHTEILE: DAUERHAFTIGKEIT UND KONSTRUKTIVE DURCHBILDUNG	
TABELLE 3: VOR- UND NACHTEILE: NACHHALTIGKEIT	20
TABELLE 4: VOR- UND NACHTEILE: WIRTSCHAFTLICHKEIT	
TABELLE 5: VOR- UND NACHTEILE: BAUPROZESS	
Tabelle 6: Vor- und Nachteile: Ästhetik	21
5.3 Abbildungsverzeichnis	
ABBILDUNG 1: SITUATIONSPLAN DES NEGRELLISTEGS	3
ABBILDUNG 2: ILLUSTRATION PROJEKT "96"	4
ABBILDUNG 3: ANSICHT PROJEKT "96"	4
Abbildung 4: Vermasster Querschnitt	5
ABBILDUNG 5: QUERSCHNITT: BRÜCKENMITTE	5
ABBILDUNG 6: QUERSCHNITT: ZOLLSTRASSE / EUROPAALLEE	5
ABBILDUNG 7: QUERSCHNITT TREPPE / LIFT (GUSTAV-GULL-PLATZ)	5
ABBILDUNG 8: KRAFTFLUSS: "96" (VERTIKAL)	6
ABBILDUNG 9: KRAFTFLUSS: "96" (HORIZONTAL)	7
ABBILDUNG 10: BAUPHASE 0: INSTALLATION STAHLBAU, SCHUTZMASSNAHMEN BAHN, ARBEITSBÜHNE IN ERHÖHTER LA	GE 8
ABBILDUNG 11: BAUPHASE 1: INSTALLATION STAHLBAU, SCHUTZMASSNAHMEN BAHN; BAUPHASE 2: MONTAGE STÜTZ	EN,
Installation Vorschubelemente	8
ABBILDUNG 12: BAUPHASE 3: EINBAU ELEMENT 1 (L = 35 M) MIT VORBAUSCHNABEL (L = 5.00 M)	8
ABBILDUNG 13: BAUPHASE 4: MONTAGE PROVISORISCHE ABSTÜTZUNG, EINBAU ELEMENT 2, SCHWEISSUNG AN ELEME	NT 1 8
ABBILDUNG 14: BAUPHASE 5: VERSCHUB ELEMENTE CA. 43 M, KRITISCHER BAUZUSTAND BEI AUSKRAGUNG 43 M	8
ABBILDUNG 15: BAUPHASE 6: EINBAU ELEMENT 3, SCHWEISSUNG AN ELEMENT 2, VERSCHUB ELEMENTE CA. 35 M	9
ABBILDUNG 16: BAUPHASE 7: EINBAU ELEMENT 4, SCHWEISSUNG AN ELEMENT 3, VERSCHUB ELEMENTE CA. 26 M END	
BAUPHASE 8: EINBAU ELEMENT 5, SCHWEISSUNG AN ELEMENT 4, DEMONTAGE VORBAUSCHNABEL	9
ABBILDUNG 17: BAUPHASE 9: LASTÜBERTRAGUNG DER BRÜCKE MIT PRESSEN AUF DIE STÜTZEN / ABBAU VERSCHUBELE	MENTE UND
einen Teil der provisorischen Abstützung; Bauphase 10: Brücke absenken, Verbinden Stützen Mittel	.FELD 9
ABBILDUNG 18: BAUPHASE 11: AUFPRESSEN / VORSPANNEN STÜTZEN RANDFELD, VERBINDUNG STÜTZEN RANDFELD	9
ABBILDUNG 19: BAUPHASE 12: ANSCHLUSS TREPPENAUFGÄNGE; BAUPHASE 13: MONTAGE LIFT, BELAGSARBEITEN, AB	
UND SCHUTZKONSTRUKTIONEN	
ABBILDUNG 20: ILLUSTRATION PROJEKT "337939"	-
ABBILDUNG 21: ANSICHT PROJEKT "337939"	
ABBILDUNG 22: AUFSICHT RAMPENBAUWERK	
ABBILDUNG 23: PERSPEKTIVE IM NEGRELLISTEG	
ABBILDUNG 24: QUERSCHNITT	
ABBILDUNG 25: KRAFTFLUSS "337939" (VERTIKAL)	
ABBILDUNG 26: KRAFTFLUSS "337939" (HORIZONTAL)	11
ABBILDUNG 27: TAKTSCHIEBEVERFAHREN	
ABBILDUNG 28: ILLUSTRATION PROJEKT "WURMLOCH"	
ABBILDUNG 29: ANSICHT PROJEKT "WURMLOCH"	
ABBILDUNG 30: QUERSCHNITT	14

ABBILDUNG 31: ANSICHT FACHWERKPYLONE	14
ABBILDUNG 32: SCHNITT A FACHWERKPYLON	14
ABBILDUNG 33: SCHNITT B FACHWERKPYLON	14
ABBILDUNG 34: KRAFTFLUSS PROJEKT "WURMLOCH" (VERTIKAL)	15
ABBILDUNG 35: KRAFTFLUSS PROJEKT "WURMLOCH" (HORIZONTAL)	15
ABBILDUNG 36: BAUPHASE 1: STAHLBAUMONTAGE	16
ABBILDUNG 37: BAUPHASE 2: ABSENKUNG I	17
ABBILDUNG 38: BAUPHASE 3: ABSENKUNG II	17
ABBILDUNG 39: BAUPHASE 4: STAHLBAU PYLONE	17
Abbildung 40: Bauphase 5: Ausrüstung	17
ABBILDUNG 41: VERGLEICH DER VARIANTEN MIT EINEM NETZDIAGRAMM	22

6 Anhang

Siehe Anhang A.

Negrellisteg – Zürich

Wettbewerbsanalyse und Entwurf

Nutzungsvereinbarung

Bachelor-Thesis HS22

Hochschule Luzern Technik und Architektur

Horw, 03. Januar 2023

Autor:
Shpat Beqiri
Eichenstrasse 17
6015 Luzern

Dozent:

Dr. Stephan Gollob

Experte:

Dr. Axel Volkwein

Inhaltsverzeichnis

1	Allg	emeine Ziele für die Nutzung	3
	1.1	Einleitung	3
	1.2	Bauwerksbeschrieb	3
	1.3	Bauherrschaft / Benutzer	4
	1.4	Vorgesehene Nutzung	4
	1.5	Geplante Nutzungsdauer	4
	1.6	Festlegungen zur Nutzung	4
2	Gru	ndlagen	5
	2.1	Normen	5
	2.2	Richtlinien / Weisungen	5
	2.3	Projektspezifische Grundlagen	5
3	Umi	feld und Drittanforderungen	5
	3.1	Anforderungen während der Bauzeit	5
4	Bed	lürfnisse des Betriebs und des Unterhalts	6
	4.1	Betrieb	6
	4.2	Unterhalt	6
5	Bes	ondere Vorgaben der Bauherrschaft	6
	5.1	Vorgaben bezüglich Konstruktionshöhen	6
6	Sch	utzziele und Sonderrisiken	6
	6.1	Anprall	6
	6.2	Erdbeben	6
	6.3	Kabelausfall	6
7	Akz	eptierte Risiken	7
	7.1	Brand	7
	7.2	Mutwillige Zerstörung	7
	7.3	Explosion	7
8	Nor	mbezogene Bestimmungen	7
	8.1	Einwirkungen	7
	8.2	Nachweise	7
	8.3	Anhang	7

1 Allgemeine Ziele für die Nutzung

1.1 Einleitung

Der Hauptbahnhof Zürich und sein Umfeld unterliegen einer starken Entwicklungsdynamik. Die aktuellen Verbindungsmöglichkeiten zwischen den Stadtkreisen 4 und 5 decken den heutigen und zukünftigen Bedarf nicht mehr. Deshalb sieht der kommunale Verkehrsrichtplan vor, die Stadtkreise 4 und 5 für den Langsamverkehr mit einer Brücke zu verbinden.

1.2 Bauwerksbeschrieb

Beim Negrellisteg handelt es sich um eine Schrägkabelbrücke mit einem 2-Pylonensystem. Die beiden Pylone werden als Nadelpylonen mit nach aussen geneigten Nadelstielen ausgebildet. Der Brückenträger wird am Pylon so gelagert, dass er in Längsrichtung verschieblich ist. Seitlich wird die Brücke an zwei Pylonen-förmigen Gleitlagern gelagert. Die Abmessungen für das Dreifeldsystem der Schrägkabelbrücke betragen 35 m – 78 m – 38 m. Die Pylone sind jeweils 24.72 m und 26.12 m gross und haben eine maximale Kabelweite von 35 m – 35 m bzw. 38 m – 38 m. Die Schrägkabel sind als Halbfächer an den Nadelpylonen angeordnet. Die Fahrbahnplatte besteht aus Beton und hat ein zweiseitiges Quergefälle von 2 %. Das Längsgefälle der Brücke beträgt ebenfalls 2 %. Für die Kabelverankerung an der Fahrbahn gibt es jeweils zwei seitliche Konsolen die zusätzlich auch als Verankerungsplatz für die Brüstungen dienen. Zwischen den Verankerungspunkten sind unterhalb der Fahrbahn querliegend Unterzüge vorgesehen. Die Pylone sind im kiesigen Untergrund eingespannt und werden flach fundiert.

Abbildung 1: Der Negrellisteg mit dem Zürcher Stadtbild

1.3 Bauherrschaft / Benutzer

Die SBB AG ist in Vertretung durch die Division SBB Immobilien, Development Europaallee, die Auftraggeberin des Studienauftrags.

1.4 Vorgesehene Nutzung

Die gleisquerende Brücke soll vorwiegend als reine Fussgängerbrücke dienen und die Stadtkreise 4 und 5 miteinander verbinden. Pro Tag werden voraussichtlich 2'500 Fussgänger und 500 Fahrräder die Brücke benutzen. Neben dem nicht motorisierten Verkehr wird die Brücke auch von leichten Unterhaltsfahrzeugen befahren.

1.5 Geplante Nutzungsdauer

Tragkonstruktion: 100 Jahre
Brüstungen: 50 Jahre
Brückenlager: 50 Jahre
Entwässerung: 50 Jahre
Fahrbahnbelag: 25 Jahre
Korrosionsschutz: 25 Jahre

Der periodische betriebliche Unterhalt sowie Inspektionen sind Voraussetzung für die Gewährleistung der Nutzungsdauer.

1.6 Festlegungen zur Nutzung

Die Nutzlasten können aus der Projektbasis entnommen werden.

2 Grundlagen

2.1 Normen

SIA-Normen:

- SIA 260:2013 Grundlagen der Projektierung von Tragwerken	
- SIA 261:2020 Einwirkungen auf Tragwerke	
- SIA 261/1:2020 Einwirkungen auf Tragwerke – Ergänzende Fest	legungen
- SIA 262:2013 Betonbau	
- SIA 262/1:2019 Betonbau – Ergänzende Festlegungen	
- SIA 263:2013 Stahlbau	
- SIA 263/1:2020 Stahlbau – Ergänzende Festlegungen	
- SIA 267:2013 Geotechnik	
- SIA 267/1:2013 Geotechnik – Ergänzende Festlegungen	

2.2 Richtlinien / Weisungen

- Zürich, Negrellisteg. Einstufiger Studienauftrag im selektiven Verfahren – September 2017

2.3 Projektspezifische Grundlagen

- Zürich, Negrellisteg. Einstufiger Studienauftrag im selektiven Verfahren September 2017
- Umgebungspläne: Wettbewerbsunterlagen (2017)

3 Umfeld und Drittanforderungen

3.1 Anforderungen während der Bauzeit

- Temporäre Zwischenabstützungen während der Bauzeit sind nur in den blau markierten Bereichen erlaubt.
- Optionale Zwischenabstützungen im Gleisfeld während der Bauzeit sind nur in den rot markierten Bereichen erlaubt.
- Installationsflächen sind nur im orange markierten Bereich erlaubt.
- Installationsplattformen sind nur in den gelb markierten Bereichen erlaubt.
- Baulärm muss geringgehalten werden

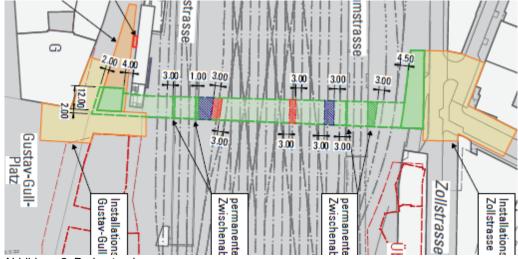


Abbildung 2: Perimeterplan

4 Bedürfnisse des Betriebs und des Unterhalts

4.1 Betrieb

- Schutz vor Vandalismus muss mit Schutzmassnahmen (Netz) gewährleistet werden.
- Entwässerung der Brücke muss stets gewährleistet sein

4.2 Unterhalt

- Streuung von Tausalz auf der Brücke und den Treppen
- Schneeräumung (muss durch die Stadt Zürich gewährleistet werden)
- Periodische Überprüfung von Bauteilen (Lager, Schrägkabel etc.)

5 Besondere Vorgaben der Bauherrschaft

5.1 Vorgaben bezüglich Konstruktionshöhen

- Brückenlänge von 150 170 m
- Im Gleisfeld muss die Mindesthöhe der Konstruktion 8.40 m betragen.
- Feste, geschlossene Brüstung mit einer Höhe von 1.10 m.
- Mindestbreite der Treppenaufgänge von 2.40 m
- Pro Seite 1 Lift für je 10 Personen
- Schutzmassnahmen gegen Vandalismus bis auf 2.00 m ab Standfläche

6 Schutzziele und Sonderrisiken

6.1 Anprall

Die Stützen müssen so bemessen werden, dass die Tragsicherheit nach einem Anprallereignis gemäss SIA 261:2020 Kapitel 14 erhalten bleibt.

6.2 Erdbeben

Das Bauwerk muss gemäss SIA 261:2020 Kapitel 16 auf Erdbeben bemessen werden. Eine eingeschränkte Gebrauchstauglichkeit ist jedoch erlaubt.

6.3 Kabelausfall

Die Brücke muss so bemessen werden, dass die Tragsicherheit nach einem Kabelausfall erhalten bleibt.

7 Akzeptierte Risiken

7.1 Brand

Brand auf und unter der Brücke ist ein akzeptiertes Risiko.

7.2 Mutwillige Zerstörung

Die mutwillige Zerstörung der für die Tragsicherheit relevanten Bauteile wird als Risiko akzeptiert.

7.3 Explosion

Die Brücke ist gemäss SIA 261:2020 Ziff. 17.2 in die Kategorie 1 einzuordnen. Das bedeutet, dass das Explosionsrisiko gering ist.

Somit sind gemäss SIA 261:2020 Ziff. 17.3.3 weder bauliche Massnahmen noch besondere Nachweise erforderlich.

8 Normbezogene Bestimmungen

8.1 Einwirkungen

Es sind die Einwirkungen gemäss SN SIA 261:2020 respektiv den Vorgaben der Nutzungsvereinbarung zu berücksichtigen.

Einwirkungen:

- Eigenlasten
- Auflasten
- Einwirkungen aus dem Baugrund
- Schnee
- Wind
- Nicht motorisierter Verkehr
- Anprall
- Brand
- Erdbeben
- Explosion

8.2 Nachweise

Die Nachweise sind gemäss der gültigen Tragwerksnormen SIA 260 – 272 zu führen. Die einzelnen Einwirkungen sind zu möglichen Gefährdungsbildern für den Nachweis der Tragsicherheit und zu möglichen Nutzungszuständen für den Nachweis der Gebrauchstauglichkeit zu kombinieren.

8.3 Anhang

Siehe Anhang B.

Negrellisteg – Zürich

Wettbewerbsanalyse und Entwurf

Projektbasis

Bachelor-Thesis HS22

Hochschule Luzern Technik und Architektur

Horw, 03. Januar 2023

Autor:
Shpat Beqiri
Eichenstrasse 17
6015 Luzern

Dozent:

Dr. Stephan Gollob

Experte:

Dr. Axel Volkwein

Inhaltsverzeichnis

1	Gru	Grundlagen		
	1.1	Normen und Richtlinien	4	
	1.2	Bezeichnungen	4	
	1.3	Projektspezifische Unterlagen	4	
	1.4	Software	4	
2	Allg	emeines	5	
	2.1	Einleitung	5	
	2.2	Projektbeschrieb	5	
	2.3	Nutzung	6	
	2.3.	1 Vorgesehene Nutzung	6	
	2.3.	2 Geplante Nutzungsdauer	6	
3	Trag	gwerkskonzept	6	
	3.1	Tragsystem	6	
	3.2	Abmessungen: Bauteile	6	
4	Bau	stoffe und Materialkennwerte	7	
	4.1	Beton	7	
	4.2	Bewehrungsstahl	7	
	4.3	Schrägkabel	7	
	4.4	Baustahl	7	
	4.5	Korrosionsschutz	7	
	4.6	Oberflächenschutzsysteme	8	
	4.7	Belag	8	
	4.8	Entwässerung	8	
5	Bau	grund	8	
	5.1	Baugrundeigenschaften	8	
	5.2	Baugrundkennwerte	8	
6	Bau	verfahren	ć	
7	Einv	virkungen	ć	
	7.1	Ständige Einwirkungen	ő	
	7.2	Veränderliche Einwirkungen	ç	
	7.2.	1 Nicht motorisierter Verkehr	ő	
	7.2.	2 Schnee	ő	
	7.2.	3 Wind	10	
	7.2.	4 Temperatur	10	
	7.3	Aussergewöhnliche Einwirkungen	10	
	7.3.			
	7.3.			
	7.3.	3 Brand	11	

8	Bemessung			12
8	8.1	Gef	ährdungsbilder	12
8	8.2		nessungssituation (Tragsicherheit)	
	8.2.	1	Grenzzustände der Tragsicherheit	13
8	8.3	Ber	nessungssituation (Gebrauchstauglichkeit)	13
	8.3.	1	Nutzungszustände der Gebrauchstauglichkeit	14
8.3		2	Grenzzustände der Gebrauchstauglichkeit	14
9	9 Dauerhaftigkeit			15
10	Α	kzep	otierte Risiken	15
11	V	erze	ichnisse	16
11.1 Literaturverzeichnis				16
	11.2	Tab	pellenverzeichnis	16
12	Α	nhar	ng	16

1 Grundlagen

1.1 Normen und Richtlinien

-	SIA 260:2013	Grundlagen der Projektierung von Tragwerken
-	SIA 261:2020	Einwirkungen auf Tragwerke
-	SIA 261/1:2020	Einwirkungen auf Tragwerke – Ergänzende Festlegungen
-	SIA 262:2013	Betonbau
-	SIA 262/1:2019	Betonbau – Ergänzende Festlegungen
-	SIA 263:2013	Stahlbau
-	SIA 263/1:2020	Stahlbau – Ergänzende Festlegungen
-	SIA 267:2013	Geotechnik
-	SIA 267/1:2013	Geotechnik – Ergänzende Festlegungen

Bemessungswert einer Aussergewöhnlichen Einwirkung

1.2 Bezeichnungen

 A_d

u	
\mathbf{a}_{d}	Bemessungswert einer geometrischen Grösse
E	Auswirkung in Funktion der in der Klammer aufgeführten Bemessungswerte
E_d	Bemessungswert einer Auswirkung
G_k	Charakteristischer Wert einer ständigen Einwirkung
P_k	Charakteristischer Wert einer Vorspannung
Q_{k1}	Charakteristischer Wert der (veränderlichen) Leiteinwirkung
$\psi_{0i}Q_{ki}$	Seltener Wert der veränderlichen Begleiteinwirkung i
$\psi_{11}Q_{k1}$	Häufiger Wert einer veränderlichen Einwirkung bei einer aussergewöhnlichen Einwirkung oder häufiger Wert der (veränderlichen) Leiteinwirkung
$\psi_{2i}Q_{ki}$	Quasi-ständiger Wert einer veränderlichen Einwirkung i in Kombination mit einer aussergewöhnlichen Einwirkung oder dem häufigen Wert der (veränderlichen) Leiteinwirkung
X_d	Bemessungswert einer Baustoff- oder Baugrundeigenschaft
Y G	Lastbeiwert für eine ständige Einwirkung
Y P	Lastbeiwert für eine Einwirkung aus Vorspannung
γ Q1	Lastbeiwert für die (veränderliche) Leiteinwirkung
Ψ ₀	Reduktionsbeiwert für den seltenen Wert einer veränderlichen Einwirkung
Ψ1	Reduktionsbeiwert für den häufigen Wert einer veränderlichen Einwirkung
Ψ2	Reduktionsbeiwert für den quasi-ständigen Wert einer veränderlichen Einwirkung

1.3 Projektspezifische Unterlagen

Die folgenden projektspezifischen Unterlagen dienen als Grundlage und Vorgabe:

- Aufgabenstellung Bachelor-Thesis, Negrellisteg, Shpat Beqiri
- Nutzungsvereinbarung Negrellisteg
- Technischer Bericht Negrellisteg
- Bundesamt für Strassen ASTRA Schrägseile und externe Spannglieder für den Brückenbau Ausgabe 2011 V1.00
- Broschüre: BBR HiAm CONA Schrägseile

1.4 Software

Für die Berechnungen der Brücke werden folgende Software benutzt:

- Axis VM X6

2 Allgemeines

2.1 Einleitung

Der Hauptbahnhof Zürich und sein Umfeld unterliegen einer starken Entwicklungsdynamik. Die aktuellen Verbindungsmöglichkeiten zwischen den Stadtkreisen 4 und 5 decken den heutigen und zukünftigen Bedarf nicht mehr. Deshalb sieht der kommunale Verkehrsrichtplan vor, die Stadtkreise 4 und 5 für den Langsamverkehr mit einer Brücke zu verbinden.

2.2 Projektbeschrieb

Beim Negrellisteg handelt es sich um eine Schrägkabelbrücke mit einem 2-Pylonensystem. Die beiden Pylone werden als Nadelpylonen mit nach aussen geneigten Nadelstielen ausgebildet. Der Brückenträger wird am Pylon so gelagert, dass er in Längsrichtung verschieblich ist. Seitlich wird die Brücke an zwei Pylonen-förmigen Gleitlagern gelagert. Die Abmessungen für das Dreifeldsystem der Schrägkabelbrücke betragen 35 m – 78 m – 38 m. Die Pylone sind jeweils 24.72 m und 26.12 m gross und haben eine maximale Kabelweite von 35 m – 35 m bzw. 38 m – 38 m. Die Schrägkabel sind als Halbfächer an den Nadelpylonen angeordnet. Die Fahrbahnplatte besteht aus Beton und hat ein zweiseitiges Quergefälle von 2 %. Das Längsgefälle der Brücke beträgt ebenfalls 2 %. Für die Kabelverankerung an der Fahrbahn gibt es jeweils zwei seitliche Konsolen die zusätzlich auch als Verankerungsplatz für die Brüstungen dienen. Zwischen den Verankerungspunkten sind unterhalb der Fahrbahn querliegend Unterzüge vorgesehen. Die Pylone sind im kiesigen Untergrund eingespannt und werden flach fundiert.

Abbildung 1: Der Negrellisteg mit dem Zürcher Stadtbild

2.3 Nutzung

2.3.1 Vorgesehene Nutzung

Die gleisquerende Brücke soll vorwiegend als reine Fussgängerbrücke dienen und die Stadtkreise 4 und 5 miteinander verbinden. Pro Tag werden voraussichtlich 2'500 Fussgänger und 500 Fahrräder die Brücke benutzen. Neben dem nicht motorisierten Verkehr wird die Brücke auch von leichten Unterhaltsfahrzeugen befahren.

2.3.2 Geplante Nutzungsdauer

Die geplanten Nutzungsdauern der verschiedenen Bauteile können aus der Nutzungsvereinbarung entnommen werden.

3 Tragwerkskonzept

3.1 Tragsystem

Der Negrellisteg wird als vorwiegende Stahlbetonbrücke ausgeführt. Die Brücke besitzt eine Länge von 151 Meter. Sie wird an den Pylonen und Widerlagern mit verschieblichen Auflager gelagert, sodass Ausdehnungen infolge Temperatureinwirkung möglich sind. Das Kabelwerk hat die Anordnung eines Halbfächers und wird mit einer Gabelverankerung an den Pylonen befestigt.

3.2 Abmessungen: Bauteile

Tabelle 1: Abmessungen: Bauteile

Bauteil	Abmessungen
Fahrbahnplatte	Breite: 4 m
	Länge: 151 m
	Dicke: 26 – 22 cm (Zweiseitiges Gefälle)
Unterzug	Länge: 4 m
	Höhe: 20 cm
	Breite 20 cm
Konsole	Länge: 151 m
	Breite: 45 cm
	(Genaue Abmessungen → Anhang C)
	Höhe: 60 cm
	(Genaue Abmessungen → Anhang C)
Querriegel (Pylon und Widerlager)	Länge: 5.90 m
	Breite: 40 cm
	Höhe: 40 cm
Geländer	Länge: 151 m
	Höhe: 1.10 m
	Breite: 15 cm
Schrägkabel	Variabel (siehe Anhang C)
Pylone	Höhen: 24.72 m, 26.12 m
	Neigung oben: 1 m nach aussen
	Neigung unten: 1 m nach aussen
	Querschnitt: 1.0 m x 1.0 m

4 Baustoffe und Materialkennwerte

Im folgenden Kapitel werden die Rechenwerte für die jeweiligen Baustoffe aufgelistet.

4.1 Beton

Tabelle 2: Materialkennwerte: Beton

Bauteil	Betonsorte	Grösstkorn D _{max} (mm)	f _{cd} (N/mm²)	f _{ctm} (N/mm ²)	T _{cd} (N/mm ²)
Pylon	C 35/45	32.0	22.0	3.2	1.20
Querriegel					
Fahrbahn					
Konsole					
Unterzug					

4.2 Bewehrungsstahl

Tabelle 3: Materialkennwerte: Bewehrungsstahl

Bauteil	Stahlsorte	f _{sk} (N/mm²)	f _{sd} (N/mm ²)	E _s (N/mm ²)	$\epsilon_{ ext{yd}}$	$\epsilon_{ ext{yd}}$
Alle Bewehrungen	B500B	500	435	205'000	2.12 ‰	45.0 %

Die Bewehrungsüberdeckung ist durch die Expositionsklasse gegeben:

Tabelle 4: Expositionsklassen und die zugehörigen Bewehrungsüberdeckungen

Bauteil		Expositionsklasse	Bewehrungsüberdeckung
Pylone	Komplett	XC4	c _{nom} ≥ 40 mm
Querriegel	Komplett	XC4	c _{nom} ≥ 40 mm
Fundament	Komplett	XC4	c _{nom} ≥ 40 mm
Fahrbahn	Oben	XC3	c _{nom} ≥ 35 mm
	Unten	XC1	c _{nom} ≥ 20 mm
Konsole	Komplett	XD3	c _{nom} ≥ 55 mm
Unterzug	Komplett	XC1	c _{nom} ≥ 20 mm

4.3 Schrägkabel

Die Schrägkabel bestehen aus einem dichten Bündel parallel angeordneten 7-drähtiger Litzen. Die Kabel und Verankerungselemente werden von der Firma BBR hergestellt.

4.4 Baustahl

Tabelle 5: Materialkennwerte: Baustahl, (SIA 263:2013, Tab. 1)

Bauteil	Dicke (mm)	Stahlsorte	f _y (N/mm ²)	f _u (N/mm ²)	E _s (N/mm ²)
Gabelverankerung	74	S355	335	490	210000

4.5 Korrosionsschutz

Der Korrosionsschutz für die Schrägkabel setzt sich aus drei Komponenten zusammen:

- Verzinkt
- Gefettet
- Ummantelt (PE-Hülle)

4.6 Oberflächenschutzsysteme

Tabelle 6: Oberflächenschutzsystem

Bauteil	Oberflächenschutzsystem	Bemerkungen
Pylone	Hydrophobierung	Macht Sichtbeton wasserabstossend und
Querriegel		sorgt für einen langfristigen Schutz
Konsole		

4.7 Belag

Für die Fahrbahn wird ein 8.00 cm dicker Belag aus Gussasphalt verwendet.

4.8 Entwässerung

Für die Entwässerung der Fahrbahn werden zwei Kastenrinnen ohne seitliche Schlitze auf der Fahrbahnplatte verlegt. Die Rinnen werden von der Firma Trauthwein GmbH in Deutschland produziert und bestehen aus Edelstahl (1.4571). Die Abmessungen der Kastenrinne sind 30 cm Breite, 1.00 m Länge und 4.5 cm Höhe. Der entscheidende Vorteil dieser Rinne ist, dass sie höhenverstellbar ist und somit für den 8 cm dicken Belag geeignet ist.

5 Baugrund

Im folgenden Kapitel werden die Baugrundeigenschaften beschrieben und die Kennwerte festgelegt.

5.1 Baugrundeigenschaften

Für den Negrellisteg ist kein geologisches Gutachten vorhanden, daher sind die folgenden Beschreibungen nur Schätzungen. Bei einer Weiterführung des Projektes muss ein geologisches Gutachten vorgelegt werden. Auf der Website map.geo.admin.ch ist ersichtlich das um den Hauptbahnhof Zürich «Sihl-Schotter» zu finden ist (siehe Anhang C). Die Tragfähigkeit von Schotter ist gross bis sehr gross, womit eine Flachfundation der Pylone möglich wird. Des Weiteren ist der Boden drainiert und schon durch die Züge schon vorbelastet. Dadurch dass keine Angaben über die Mächtigkeit dieser Schotterschicht vorhanden sind, werden keine Setzungsberechnungen durchgeführt. Die Baugrundkennwerte im Kapitel 5.2 werden aus einem online verfügbaren geologischgeotechnischen Bericht der Firma Jäckli Geologie entnommen.

5.2 Baugrundkennwerte

Tabelle 7: Baugrundkennwerte

Bodenschicht	Mächtigkeit	Raumgewicht	Kohäsion	Reibungswinkel
	(m)	$\gamma (kN/m^3)$	c' (kN/m²)	φ' (°)
Schotter	-	20.5	0	34

6 Bauverfahren

Der Negrellisteg wird mit der Freivorbauweise gebaut. Der detaillierte Bauablauf wird im Technischen Bericht Kapitel 5 beschrieben.

7 Einwirkungen

Im folgenden Kapitel werden die Einwirkungen des Negrellistegs aufgelistet. Die detaillierten Berechnungen sind im Anhang C ersichtlich.

7.1 Ständige Einwirkungen

Charakteristische Werte nach SIA 261:2020 Anhang A:

Tabelle 8: Ständige Einwirkungen

abelle 6. Standige Elliwirkungen				
Einwirkung	Bauteil	Wert		
Eigenlast				
	Beton	25 kN/m ³		
	Kabel	95 kN/m'		
Auflast				
	Belag	1.92 kN/m ²		
	Geländer	0.5 kN/m'		
Vorspannung				
	Schrägkabel	Variabel (siehe Anhang C)		

7.2 Veränderliche Einwirkungen

7.2.1 Nicht motorisierter Verkehr

Charakteristische Werte nach SIA 261:2020 Kapitel 9:

Tabelle 9: Veränderliche Einwirkungen: Nicht motorisierter Verkehr

Einwirkungen	Flächenlast q _k	Einzellast Q _k
Lastmodell 1	4 kN/m ²	-
Lastmodell 2	-	10 kN

Horizontale Kräfte

Gemäss SIA 261:2020 Ziffer 9.2.6 muss eine in Fahrbahn wirkende Horizontalkraft Q_{hk} berücksichtigt werden. (Entweder Q_{hk1} oder Q_{hk2}):

 $Q_{hk1} = 10 \% q_k = 1.60 \text{ kN/m}$ $Q_{hk2} = 60 \% Q_k = 6.00 \text{ kN}$

7.2.2 Schnee

Gemäss SIA 260:2020 Anhang C Tabelle 8 sind Schneelasten nur bei gedeckten Brücken als Begleiteinwirkung zu berücksichtigen. Somit sind die Einwirkungen durch Schnee nicht massgebend.

7.2.3 Wind

Die Windkräfte in Brückenlängsrichtung werden nicht berücksichtigt da die Angriffsfläche der Winde in Längsrichtung klein ist und somit nicht massgebend.

Tabelle 10: Veränderliche Einwirkungen: Wind

Bauteil	Richtung	Wert
Pylon	Quer zur Brücke	1.4 kN/m'
Fahrbahn	Quer zur Brücke	1.6 kN/m'

7.2.4 Temperatur

Charakteristische Werte nach SIA 261:2020 Kapitel 7:

Tabelle 11: Temperaturausdehnungskoeffizienten und Charakteristische Werte (gleichmässig und linear)

rabelle 11. Temperaturausderinungskoemzienten und Charaktenstische Werte (gleichmassig und ilhear)			
Temperaturausdehnungskoeffizienten			
Baustoff	α _T in 10 ⁻⁶ / °C		
Beton	10		
Stahl	10		
Charakteristische Werte der glei	chmässigen Temperaturände	erung	
Bauweise	ΔT _{1k} in °C		
Stahlbeton, Spannbeton	± 20		
Stahl	± 30		
Charakteristische Werte des line	aren Anteils der Temperatur	änderung	
Brückenart	Oben warm ΔT _{2k} in °C	Oben kalt ΔT _{2k} in °C	
Stahlbrücken	+ 10	- 6	
Betonbrücken 1)			
- h ≤ 1.0 m	+ 12	- 4	
- h ≥ 3.0 m	+ 8 - 3		
1) h = Querschnittshöhe; für Querschnittshöhen zwischen 1 m und 3 m dürfen die Werte			
linear interpoliert werden.			
Die Durchschnittstemperatur im Mittelland beträgt 10 °C			

7.3 Aussergewöhnliche Einwirkungen

7.3.1 Anprall

Anprall von Strassenfahrzeugen

Gemäss SIA 261:2020 Ziff. 14.2.1 muss der Anprall durch Strassenfahrzeuge innerorts nur berücksichtigt werden, wenn das Tragwerk näher als 3 m vom Fahrbahnrand entfernt ist. Dadurch dass die äusseren Widerlager mehr als 3 m von der Fahrbahn entfernt sind, entfällt somit der Anprall von Strassenfahrzeugen.

Anprall von Schienenfahrzeugen

Gemäss SIA 261:2020 Ziff. 14.3.4 dürfen für Strecken mit Ausbaugeschwindigkeiten bis 40 km/h die Anprallkräfte um 50 % reduziert werden. Die Anprallkräfte betragen somit neu:

Tabelle 12: Aussergewöhnliche Einwirkungen: Anprall von Schienenfahrzeugen

Bauteil	Q _{dx} in kN	Q _{dy} in kN
Pylone	2'000.00	750.00

Wobei x in Fahrrichtung und y senkrecht zur Fahrrichtung wirkt.

7.3.2 Erdbeben

Werte nach SIA 261:2020 Kapitel 16:

Tabelle 13: Rechenwerte: Erdbeben

Erdbebenzone Z1a	Bemessungswert der horizontalen Bodenbeschleunigung			
	a _{gd}	0.6 m/s ²	Anhang F	
			16.2.1.2	
Baugrundklasse B	Bodenkenn- und F	Parameterwerte		
	V _{s,30}	500 – 800 m/s	Tabelle 24	
	N _{SPT}	> 50 / 0.3 m	Tabelle 24	
	Cu	> 250 kN/m ²	Tabelle 24	
	S	1.20	Tabelle 24	
	T _B	0.08 s	Tabelle 24	
	T _C	0.35 s	Tabelle 24	
	T_D	2.0 s	Tabelle 24	
	lg	500 m	Tabelle 24	
Bauwerksklasse II	Bedeutungsbeiwert			
Tragsicherheit	Υf	1.20	Tabelle 25	
Gebrauchstauglichkeit	Υf	-	Tabelle 25	
Verhaltensbeiwert q				
	q	2.0	SIA 262:2013 Tab. 14	

Die Ermittlung der Erdbebenkräfte erfolgt durch das Ersatzkraftverfahren. Die genauen Berechnungen sind im Anhang C ersichtlich.

Die Ersatzkräfte für Erdbeben betragen:

 $F_x = 74.7 \text{ kN}$ $F_y = 74.7 \text{ kN}$

7.3.3 Brand

Die Einwirkungen aus Brand werden im Rahmen dieser Arbeit nicht weiter behandelt.

8 Bemessung

8.1 Gefährdungsbilder

Im folgenden Kapitel werden die Gefährdungsbilder tabellarisch dargestellt.

Tabelle 14: Gefährdungsbilder

Gefährdungsbild	Betroffene Bauteile	Massnahmen
Nutzlast	Alle Bauteile	- Statische Bemessung
Schnee	Alle Bauteile	- Schneeräumung durch die
NA (* 1		Stadt Zürich
Wind	Alle Bauteile	- Statische Bemessung
Anprall	Stützen	 Statische Bemessung
Temperatur	Alle Bauteile	 Statische Bemessung
Schwingungen	Brückenträger	 Schwingungsanalyse
	-	 Konstruktive Durchbildung
Erdbeben	Alle Bauteile	 Statische Bemessung
Explosion	Alle Bauteile	 Akzeptiertes Risiko
		→ keine Massahmen
Brand	Alle Bauteile	 Fluchtwege freihalten
		 Akzeptiertes Risiko
		→ keine weiteren
		Massnahmen
Kabelausfall	Alle Bauteile	- Statische Bemessung

8.2 Bemessungssituation (Tragsicherheit)

Nach der SIA 260:2013 Ziff. 4.4.3 wird der Nachweis der Tragsicherheit in vier Grenzzuständen aufgeteilt:

- Typ 1: Betrifft die Gesamtstabilität des Tragwerks (Kippen, Abheben oder Aufschwimmen als starrer Körper).
- Typ 2: Betrifft das Erreichen des Tragwiderstands des Tragwerks oder eines seiner Bauteile. (Versagen durch Bruch, übermässige Verformungen, Umwandlung des Tragwerks in einen Mechanismus oder Verlust der Stabilität eines oder mehrerer Bauteile).
- Typ 3: Betrifft das Erreichen des Tragwiderstands des Baugrunds (Hangrutschung, Böschungsbruch, Geländebruch).
- Typ 4: Betrifft das Erreichen der Ermüdungsfestigkeit des Tragwerks oder eines seiner Bauteile.

Die Bemessungswerte für andauernde oder vorübergehende Bemessungssituationen sind wie folgt zu ermitteln:

$$E_d = E \{ \gamma_G G_k, \gamma_P P_k, \gamma_{Q1} Q_{k1}, \psi_{0i} Q_{ki}, X_d, a_d \}$$

Die Bemessungswerte für aussergewöhnliche Bemessungssituationen sind wie folgt zu ermitteln:

$$E_d = E \{G_k, P_k, A_d, \Psi_{2i}Q_{ki}, X_d, a_d\}$$

Für Grenzzustände der Typen 2 und 3 gilt die Tragsicherheit als nachgewiesen, wenn

$$E_d \leq R_d$$

8.2.1 Grenzzustände der Tragsicherheit

Tabelle 15: Lastkombinationen GZT Typ 2, (SIA 260:2013 Tabelle 1)

		Grenzzustände der Tragsicherheit Typ 2 (GZT oder ULS)					
Einwirkungen	GB 1	GB 2	GB 3	GB 4	GB 5	GB 6	GB 7
	(NMV*)	(NMV*)	Wind	Tempe-	Anprall	Erd-	Kabel-
	LM1	LM2		ratur		beben	ausfall
Ständige							
Einwirkungen							
Eigenlasten	1.35 /	1.35 /	1.35 /	1.35 /	1.00	1.00	1.00
	0.80	0.80	0.80	0.80			
Auflasten	1.35 /	1.35 /	1.35 /	1.35 /	1.00	1.00	1.00
	0.80	0.80	0.80	0.80			
Vorspannung	1.20 ¹⁾	1.20 ¹⁾	1.20 ¹⁾	1.20 ¹⁾	1.00	1.00	1.00
Veränderliche							
Einwirkungen							
NMV* Lastmodell 1	1.50	-	0.40	0.40	-	-	-
NMV* Lastmodell 2	-	1.50	ı	-	-	-	-
Horizontale Kräfte	1.50	-	0.40	0.40	-	-	-
Wind	0.60	0.60	1.50	0.60	-	-	-
Temperatur	0.60	0.60	0.60	1.50	0.50	0.50	0.50
Aussergewöhnliche							
Einwirkungen							
Anprall	-	-	-	-	1.00	-	-
Erdbeben	-	-	-	-	-	1.00	-
1) Lastbeiwert für eine Einwirkung aus Vorspannung (SIA 262:2013, Ziff. 4.1.5.5.2)							

^{*}Nicht motorisierter Verkehr

8.3 Bemessungssituation (Gebrauchstauglichkeit)

Nach der SIA 260:2013 Ziff. 4.4.4 werden die Bemessungssituationen für die Gebrauchstauglichkeit in drei Typen von Lastfällen unterschieden:

- Seltene Lastfälle:

$$E_d = E \{G_k, P_k, Q_{k1}, \psi_{0i} Q_{ki}, X_d, a_d\}$$

- Häufige Lastfälle:

$$E_d = E \{G_k, P_k, \psi_{11}Q_{k1}, \psi_{2i}Q_{ki}, X_d, a_d\}$$

- Quasi-Ständige Lastfälle:

$$E_d = E \{G_k, P_k, \psi_{2i}Q_{ki}, X_d, a_d\}$$

Die Gebrauchstauglichkeit gilt als nachgewiesen, wenn folgendes Bemessungskriterium erfüllt ist:

$$E_d \le C_d$$

8.3.1 Nutzungszustände der Gebrauchstauglichkeit

Tabelle 16: Lastkombinationen GZG (häufige Lastfälle) und GZG (quasi-ständige Lastfälle), (SIA 260:2013 Tab.8)

				Quasi-ständige Lastfälle
Einwirkungen	NZ 1:	NZ 2:	NZ 3:	NZ 4:
	LM1	Wind	Temperatur	Temperatur
Ständige Einwirkungen				
Eigenlasten	1.00	1.00	1.00	1.00
Auflasten	1.00	1.00	1.00	1.00
Vorspannung	1.00	1.00	1.00	1.00
Veränderliche Einwirkungen				
NMV* Lastmodell 1	0.40	-	-	-
NMV* Lastmodell 2	-	-	-	-
Horizontale Kräfte ¹⁾	0.40	-	-	-
Wind	-	0.20	-	-
Temperatur	0.50	0.50	0.60	0.50
Aussergewöhnliche Einwirkungen				
Anprall	-	-	-	-
Erdbeben	_	-	-	-
1) Die horizontalen Kräfte sind gleichzeitig mit Lastmodell 1 wirkend anzunehmen				

^{*}Nicht motorisierter Verkehr

8.3.2 Grenzzustände der Gebrauchstauglichkeit

Für die Nachweise der Gebrauchstauglichkeit bei Fuss- und Radwegbrücken sind die Häufigen und Quasi-Ständigen Lastfälle nachzuweisen (SIA 260:2013 Anhang C, Tab. 9).

Komfort:

Durchbiegungen infolge Lastmodell 1 (häufige Lastfälle):

$$w = l/600$$

Funktionstüchtigkeit:

Durchbiegungen nach Abzug allfälliger Überhöhungen (quasi-ständige Lastfälle):

$$w = l/700$$

Aussehen:

Durchbiegungen nach Abzug allfälliger Überhöhungen (quasi-ständige Lastfälle):

$$w = l/700$$

9 Dauerhaftigkeit

Damit die Dauerhaftigkeit des Negrellistegs gewährleistet werden kann, werden folgende Massnahmen zur Erhöhung dieser angewendet:

- Korrosionsschutz der Litzenkabel
- Betonüberdeckungen einhalten
- Entwässerung stets gewährleisten

10 Akzeptierte Risiken

Folgende Risiken werden Akzeptiert und fliessen nicht in die Bemessung ein:

- Erdbeben (Nur Einsturz muss verhindert werden)
- Explosion
- Brand
- Sabotage

11 Verzeichnisse

11.1 Literaturverzeichnis

BKOS Betonschutz. (Dezember 2022). Von https://www.bkos.ch/de/beton/betonschutz abgerufen

Trauthwein-Brückenentwässerung. (Dezember 2022). Von https://www.trauthweingmbh.de/brueckenentwaesserung/ abgerufen

11.2 Tabellenverzeichnis

Tabelle 1: Abmessungen: Bauteile	€
Tabelle 2: Materialkennwerte: Beton	
Tabelle 3: Materialkennwerte: Bewehrungsstahl	7
Tabelle 4: Expositionsklassen und die zugehörigen Bewehrungsüberdeckungen	7
TABELLE 5: MATERIALKENNWERTE: BAUSTAHL, (SIA 263:2013, TAB. 1)	7
Tabelle 6: Oberflächenschutzsystem	8
Tabelle 7: Baugrundkennwerte	8
Tabelle 8: Ständige Einwirkungen	9
Tabelle 9: Veränderliche Einwirkungen: Nicht motorisierter Verkehr	
Tabelle 10: Veränderliche Einwirkungen: Wind	10
Tabelle 11: Temperaturausdehnungskoeffizienten und Charakteristische Werte (gleichmässig und linear)	10
Tabelle 12: Aussergewöhnliche Einwirkungen: Anprall von Schienenfahrzeugen	10
Tabelle 13: Rechenwerte: Erdbeben	11
Tabelle 14: Gefährdungsbilder	12
TABELLE 15: LASTKOMBINATIONEN GZT TYP 2, (SIA 260:2013 TABELLE 1)	13
TARFLLE 16: LASTKOMBINATIONEN GZG (HÄLIFIGE LASTFÄLLE) LIND GZG (OLIASI-STÄNDIGE LASTFÄLLE) (SIA 260:2013 TAR S	8) 14

12 Anhang

Siehe Anhang C.

Negrellisteg – Zürich

Wettbewerbsanalyse und Entwurf

Technischer Bericht

Bachelor-Thesis HS22

Hochschule Luzern Technik und Architektur

Horw, 03. Januar 2023

Autor:
Shpat Beqiri
Eichenstrasse 17
6015 Luzern

Dozent:

Dr. Stephan Gollob

Experte:

Dr. Axel Volkwein

Inhaltsverzeichnis

1	Einl	leitun	g	5
	1.1	Erke	enntnisse aus der Wettbewerbsanalyse	5
	1.2	Proj	ektrahmen	5
	1.3	Bez	eichnungen	5
2	Gru	ındlaç	gen	6
	2.1	Nori	men und Richtlinien	6
	2.2	Proj	ektspezifische Unterlagen	6
	2.3	Soft	ware	6
3	Var	iante	nstudium	7
	3.1	Hoh	lkastenbrücke	7
	3.2	Sch	rägkabelbrücke	8
	3.3	Stat	bbogenbrücke	10
	3.4		scheid	
4	Ent		der Schrägkabelbrücke	
	4.1	Stat	isches System	
	4.1.	.1	Längssystem	
	4.1.	.2	Quersystem	
	4.1.		Horizontalsystem	
	4.2	-	one	
	4.3	Kab	elanordnung	15
	4.4	Kraf	tfluss	16
	4.5	Mat	erialauswahl	17
	4.6	Fun	dation	17
5	Bau	ıverfa	ahren	18
	5.1	Bau	phase 1	18
	5.2	Bau	phase 2	18
	5.3	Bau	phase 3	19
	5.4	Bau	phase 4	20
	5.5	Bau	phase 5	20
6	Mod	dellbi	ldung	21
	6.1	Trag	gwerksmodell	21
	6.1.	.1	Pylone	21
	6.1.	.2	Kabelwerk	22
	6.1.	.3	Träger	23
	6.2	Aufl	agerbedingungen	24
	6.3	Last	stellungen	25
	6.3.	.1	Nicht motorisierter Verkehr	25
	6.3.	.2	Kabelausfall	25

	6.4 V	orgehen: Schwingungsanalyse	26
	6.5 E	rstellung der Lastkombinationen	26
	6.6 S	Statische Berechnung	27
7	Ausw	irkungen	28
	7.1 K	íräfte	28
	7.1.1	Pylon	28
	7.1.2	Auflagerreaktion	31
	7.1.3	Querriegel	32
	7.1.4	Kabelwerk	33
	7.1.5	Fahrbahn	34
	7.1.6	Konsole	35
	7.1.7	Unterzug	36
	7.2 D	Ourchbiegungen	37
	7.2.1	Durchbiegungen infolge häufiger Lastfälle	37
	7.2.2	Durchbiegungen infolge quasi-ständiger Lastfälle	37
	7.3 S	Schwingungen	38
8	Nach	weise der Tragsicherheit	39
	8.1 P	Pylone	39
	8.1.1	Nachweise: Knicken	39
	8.1.2	Nachweis: Biegung und Normalkraft	40
	8.1.3	Nachweis: Querkraft	41
	8.1.4	Nachweis: Gabelverankerung	42
	8.1.5	Nachweis: Lasteinleitung Schrägkabel – Pylon	42
	8.2 C	Querriegel	43
	8.2.1	Nachweis: Biegung	43
	8.2.2	Nachweis: Querkraft	43
	8.3 F	undation	44
	8.3.1	Nachweis: Tragfähigkeitsprobleme	44
	8.4 K	(abelwerk	45
	8.4.1	Nachweis: Tragvermögen	45
	8.5 F	ahrbahn	46
	8.5.1	Nachweis: Biegung	46
	8.5.2	Nachweis: Querkraft	46
	8.6 K	Console	47
	8.6.1	Nachweis: Biegung	47
	8.6.2	Nachweis: Querkraft	47
	8.6.3	Nachweis: Abscheren Fahrbahnplatte – Konsole	48
	8.6.4	Nachweis: Lasteinleitung Schrägkabel – Konsole	48
	8.7 L	Interzug	49
	8.7.1	Nachweis: Biegung	49

	8.7.2	Nachweis: Querkraft	49
9	Nachwe	ise der Gebrauchstauglichkeit	50
	9.1 Dur	chbiegungen	50
	9.1.1	Nachweis der Durchbiegungen infolge häufiger Lastfälle	50
	9.1.2	Nachweis der Durchbiegungen infolge quasi-ständiger Lastfälle	50
	9.2 Nac	hweise der Schwingungen	51
10) Brück	enabmessungen	52
	10.1 Pylo	one	52
	10.1.1	Nadelstiele / Stützen	52
	10.1.2	Querriegel	53
	10.2 Fun	dationdation	54
	10.3 Kab	elwerk	54
	10.3.1	Schrägkabel	54
	10.3.2	Verankerungsdetail: Schrägkabel – Pylon	55
	10.3.3	Verankerungsdetail: Schrägkabel – Konsole	56
	10.4 Fah	rbahn	57
	10.4.1	Fahrbahnplatte	57
	10.4.2	Konsole	57
	10.4.3	Unterzug	58
	10.5 Anb	auten	58
	10.5.1	Treppen	59
	10.5.2	Lift	60
	10.5.3	Fahrbahnübergang	61
	10.5.4	Brüstung	61
	10.5.5	Schutznetz	61
	10.5.6	Entwässerungsrinne	62
11	Schlus	sswort	63
	11.1 Aus	blick	63
12	2 Verze	ichnisse	64
	12.1 Lite	raturverzeichnis	64
	12.2 Tab	ellenverzeichnis	64
	12.3 Abb	ildungsverzeichnis	65
13	8 Anhar	ng	66

1 Einleitung

Der Hauptbahnhof Zürich und sein Umfeld unterliegen einer starken Entwicklungsdynamik. Die aktuellen Verbindungsmöglichkeiten zwischen den Stadtkreisen 4 und 5 decken den heutigen und zukünftigen Bedarf nicht mehr. Deshalb sieht der kommunale Verkehrsrichtplan vor, die Stadtkreise 4 und 5 für den Langsamverkehr mit einer Brücke zu verbinden.

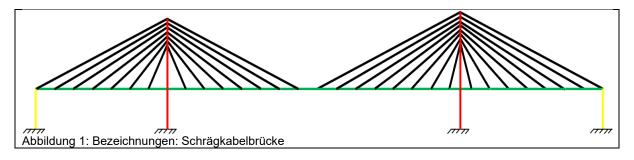
Im Rahmen der Bachelor-Thesis HS22 an der Hochschule Luzern Technik und Architektur entwirft Shpat Beqiri einen eigenen Lösungsvorschlag des Brückentragwerks. Hierfür werden die Erkenntnisse der Wettbewerbsanalyse in der Teilphase 1 in den Entwurf miteinbezogen.

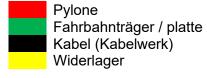
Ziel dieser Arbeit ist, eine wirtschaftliche Lösung zu finden die zudem gestalterisch ansprechend sein soll. Das Infrastrukturbauwerk sollte technisch zeitgemäss sein und sich städtebaulich gut einbinden.

1.1 Erkenntnisse aus der Wettbewerbsanalyse

Aus der Wettbewerbsanalyse in der ersten Phase der Aufgabenstellung sind folgende Aspekte für den Entwurf zu berücksichtigen:

- Bauprozess klären (Innenstädtischer Bau, Gleisbeeinträchtigung)
- Nachvollziehbarer Kraftfluss (lokal und global)
- Zwängungen wenn möglich umgehen
- Stahlelemente wenn möglich im Elementwerk vorfabrizieren
- Stützen im Feld (Anprall, Stützen im Feld sollen auch für den Bauprozess genutzt werden)


1.2 Projektrahmen


Gemäss Aufgabenstellung ist das Projekt auf Stufe Vorprojekt nach SIA-Teilphase 31 auszuarbeiten. Des Weiteren ist das Projekt in folgenden Punkten abgegrenzt:

- Schwingungsanalyse nur mit AxisVM
- Erdbebenberechnung nur mit Ersatzkraftverfahren

-

1.3 Bezeichnungen

2 Grundlagen

2.1 Normen und Richtlinien

-	SIA 260:2013	Grundlagen der Projektierung von Tragwerken
-	SIA 261:2020	Einwirkungen auf Tragwerke
-	SIA 261/1:2020	Einwirkungen auf Tragwerke – Ergänzende Festlegungen
-	SIA 262:2013	Betonbau
-	SIA 262/1:2019	Betonbau – Ergänzende Festlegungen
-	SIA 263:2013	Stahlbau
-	SIA 263/1:2020	Stahlbau – Ergänzende Festlegungen
-	SIA 267:2013	Geotechnik
-	SIA 267/1:2013	Geotechnik – Ergänzende Festlegungen

2.2 Projektspezifische Unterlagen

Die folgenden projektspezifischen Unterlagen dienen als Grundlage und Vorgabe:

- Aufgabenstellung Bachelor-Thesis, Negrellisteg, Shpat Beqiri
- Negrellisteg Nutzungsvereinbarung
- Negrellisteg Projektbasis
- Bundesamt für Strassen ASTRA Schrägseile und externe Spannglieder für den Brückenbau Ausgabe 2011 V1.00
- BBR HiAm CONA- Katalog

2.3 Software

Für die Berechnungen der Brücke werden folgende Software benutzt:

- Axis VM

3 Variantenstudium

Im folgenden Kapitel werden drei Entwürfe aufgezeigt, welche nach der Phase I der Bachelor-Thesis entstanden sind. Die Erkenntnisse aus der Wettbewerbsanalyse sind in die Entwürfe eingeflossen.

3.1 Hohlkastenbrücke

Der erste Entwurf ist eine Hohlkastenbrücke aus Baustahl. Die Feldlängen und Stützenabstände sind Aufgrund der örtlichen Zwängungen dieselben wie im Siegerprojekt «96». Der Brückenträger ist ein trapezförmiger Hohlkasten der die Anwendung von Querrippen obsolet macht. Im Hohlkasten sind oben und unten Längsrippen angeordnet, die diesen aussteifen und für einen sauberen Kraftfluss in Längsrichtung sorgen. Durch den grösseren Hohlkasten erhöht sich zudem die Torsionssteifigkeit der Brücke, was sich bei einer einseitigen Belastung positiv auswirkt. Die Innenstützen werden auf die Rampenwände aufgesetzt und mit dem Brückenträger verschweisst. Seitlich wird die Brücke von Pendelstützen gehalten, was eine Verlängerung der Brücke infolge Temperaturausdehnung ermöglicht.

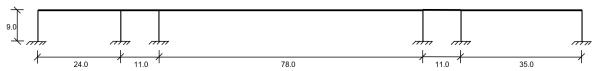


Abbildung 2: Entwurf 1: Hohlkastenbrücke

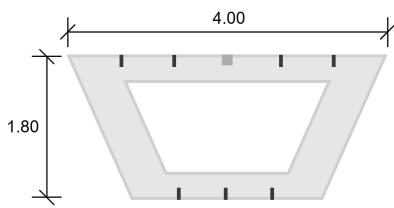
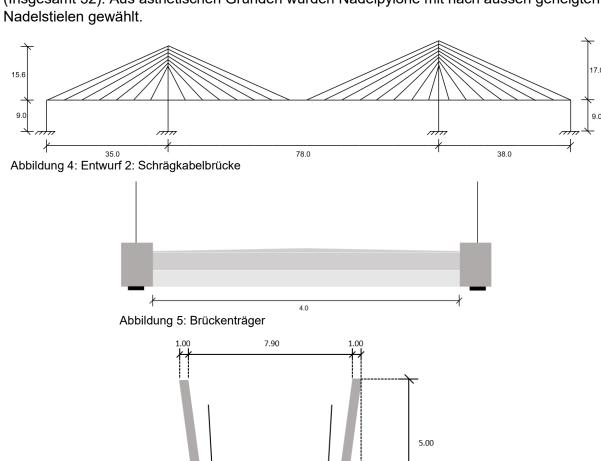
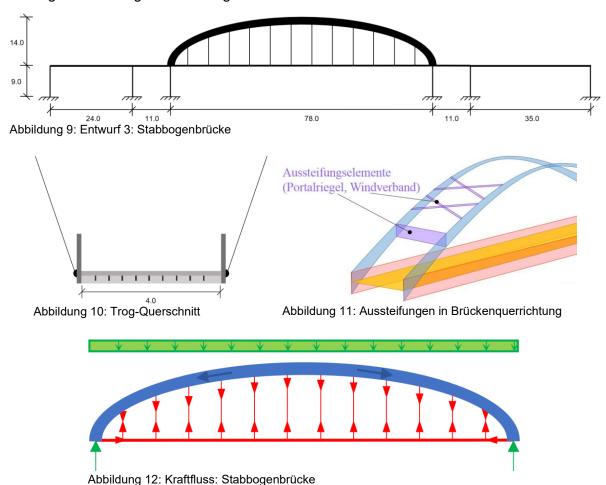



Abbildung 3: Entwurf 1: Querschnitt

3.2 Schrägkabelbrücke

Der zweite Entwurf ist eine Schrägkabelbrücke aus Stahlbeton. Damit eine Symmetrie geschaffen wird, wird das Auflager beim Gustav-Gull Platz nach innen verschoben. Die neuen Abmessungen der Brücke betragen 35 m – 78 m – 38 m. So sind die Pylonen weitestgehend ausbalanciert. Durch die unterschiedlichen Spannweiten ist ein Pylon höher als der andere sodass die Kabelwinkel ca. gleichbleiben. Beim ersten Pylon gibt es 2x7 Kabel pro Seite (Insgesamt 28). Beim höheren Pylonen sind es 2x8 Kabel pro Seite (Insgesamt 32). Aus ästhetischen Gründen wurden Nadelpylone mit nach aussen geneigten Nadelstielen gewählt.



5.90

3.3 Stabbogenbrücke

Der dritte Entwurf ist eine Stabbogenbrücke aus Baustahl oder Stahlbeton. Der Brückenträger ist als Trog ausgebildet, sodass die Spannweiten vom seitlichen bis zum inneren Auflager sauber überbrückt werden können. Für die grösste Spannweite von 78 m wird der Trog mittels Hänger an einem 14 m hohen Bogen aufgehängt. Der aus Baustahl bestehende Trog ist ideal um als Zugband für den Bogen zu fungieren. Für die Aussteifung in Brückenquerrichtung werden Windverbände angeordnet. Bei Bedarf können die Hänger wie bei einer Netzwerkbrücke angeordnet werden, sodass die Brücke auch bei einer einseitigen Belastung kleinere Biegemomente aufweist.

3.4 Entscheid

An der Zwischenpräsentation wurden die drei Varianten aufgezeigt und es stellte sich im Laufe der Diskussion heraus, dass die Schrägkabelbrücke die beste Variante für die Weiterbearbeitung war. Die Schrägkabelbrücke ist ein statisch herausforderndes Tragwerk, welches auch in Sachen Ästhetik gut punktet. Zudem ist das Bauverfahren vorteilhaft da so die Gleise nicht gesperrt werden müssen.

Die Stabbogenbrücke wirkt Aufgrund des hohen Bogens riesig. Zudem ist der Bauprozess sehr problematisch da der Bogen vor Ort hergestellt werden muss. Bei einer Rückverankerung des Bogens müssen grosse Kräfte verankert werden, was in diesem Fall aus Platzgründen schwierig ist.

Die Hohlkastenbrücke ist eine die Ihren Zweck effizient erfüllt, jedoch aufgrund ihrer Ähnlichkeit zum Siegerprojekt «96» nicht weiterbearbeitet wird.

4 Entwurf der Schrägkabelbrücke

4.1 Statisches System

Im Allgemeinen ist die Schrägkabelbrücke ein räumliches Rahmensystem, welches hochgradig statisch unbestimmt ist. Jedoch lässt es sich aufgrund der geometrischen Symmetrie und orthogonalen Belastung einfach in drei entkoppelte Systeme zerlegen, die mit dem Superpositionsprinzip überlagert werden können.

Die statischen Systeme sind:

- Längssystem
- Quersystem
- Horizontalsystem

4.1.1 Längssystem

Das Längssystem ist hochgradig statisch unbestimmt. Es wird zum Abtrag von vertikalen Lasten und horizontalen Kräften in Brückenlängsrichtung verwendet.

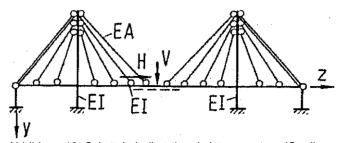


Abbildung 13: Schrägkabelbrücke als Längssystem (Quelle: G. Girmscheid – Berechnung von Schrägseilbrücken 1987)

Dabei unterscheidet sich das System unter ständigen und veränderlichen Lasten. Dadurch dass die Schrägkabelbrücke vorgespannt wird, kann sie bei ständigen Lasten als Durchlaufträger betrachtet werden (starr gestützt). Unter veränderlichen Lasten wird der Träger elastisch gestützt. Das System ähnelt auch einem Durchlaufträger jedoch sind hier einige Auflager als Federn vorzustellen. Hier ist jedoch zu beachten, dass jede Feder eine andere Steifigkeit besitzt

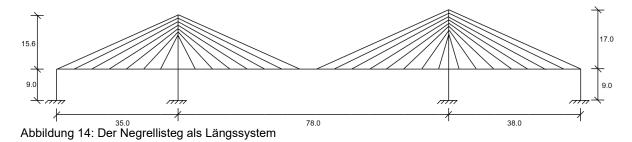


Abbildung 15: Statisches System unter ständigen Lasten

Abbildung 16: Statisches System unter veränderlichen Lasten

Damit es zu keinen Zwängungen in der Brücke kommt wird die Fahrbahnplatte verschieblich auf den seitlichen Widerlager und auf den Pylonen aufgelagert. Bei dieser Auflagerung ist zu beachten, dass die Steifigkeit des Tragsystems sehr gering ist.

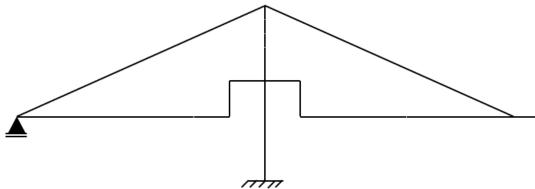


Abbildung 17: Lageranordnung für das Lagerungskonzept: Verschieblich

Bei einem Lastabtrag in Brückenlängsrichtung wirken somit nur die Schrägkabel als gefederte Gleitlager. Die horizontalen Lasten in Brückenlängsrichtung werden dabei über die Kabel in die Pylone geleitet was zu grossen Biegemomenten in den Pylonen führt.

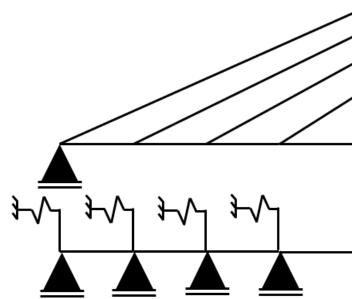
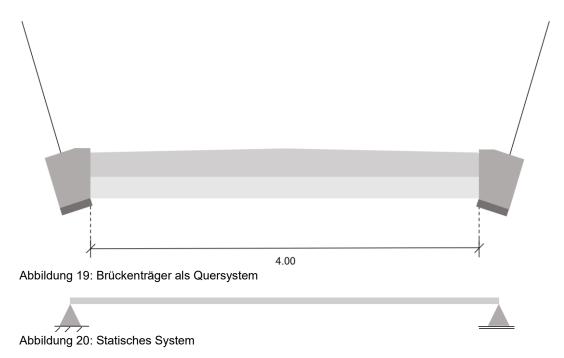



Abbildung 18: Gefederte Gleitlager als Lagerbedingung für den Horizontalen Lastabtrag

4.1.2 Quersystem

Das Quersystem ist statisch bestimmt. Mit diesem wird die Querverteilung der vertikalen Lasten auf die Seilebenen ermittelt.

4.1.3 Horizontalsystem

Das Horizontalsystem ist statisch unbestimmt. Horizontale Kräfte quer zur Brücke werden anhand dieses Systems ermittelt.

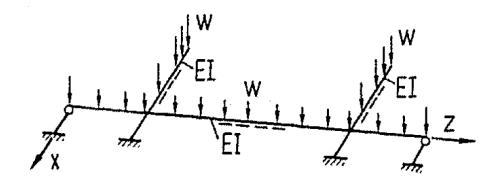
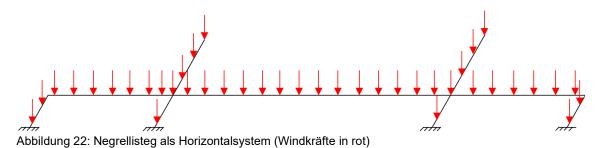
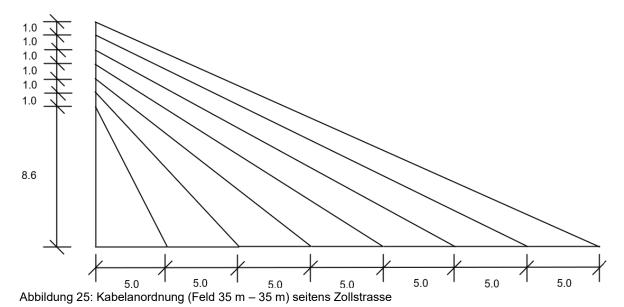
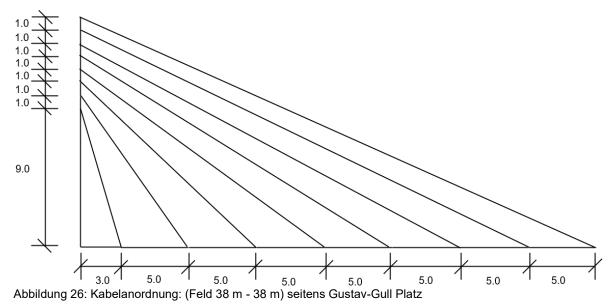



Abbildung 21: Schrägkabelbrücke als Horizontalsystem (Quelle: G. Girmscheid – Berechnung von Schrägseilbrücken 1987)


4.2 Pylone


Die Pylone wurden aus ästhetischen Gründen als Nadelpylone mit nach aussen gerichteten Nadelstielen ausgebildet. Durch die nach aussen geneigten Nadelstiele wird, die nach innen gerichtete Querbiegung durch Eigengewicht und andere Lasten reduziert. Durch die die unterschiedlichen Feldgrössen ist der Pylon seitens Gustav-Gull-Platz grösser als der andere. Mit dem höheren Pylonen kann der Winkelunterschied der Schrägkabel ausgeglichen werden, sodass sich die Druckkräfte im Träger ausgleichen.

4.3 Kabelanordnung

Die Anordnung der Kabel erfolgt als Halbfächer. Der Halbfächer ist eine Zwischenlösung einer Harfen- und Fächeranordnung. Hier werden die Kabel im oberen Bereich der Pylone verankert. Die unterschiedlichen horizontalen Kraftkomponenten in den Kabeln führen zu Biegebeanspruchungen im Pylon. Je kleiner die Länge, zwischen den Kabelverankerungen, desto kleiner ist die Biegebeanspruchung im Pylon. Am Träger werden die Kabel mit einem Abstand von 5 m angeordnet. So wird eine fast gleichmässige Verteilung über den ganzen Träger ermöglicht. Die Verankerungsabstände am Pylon betragen 1 m. So beträgt der kleinste Winkel 24° und ist somit grösser als der kleinstmögliche Winkel (20°). Die genauen Berechnungen zur Kabelanordnung sind im Anhang D ersichtlich.

4.4 Kraftfluss

Die vertikalen Lasten werden über die Schrägkabel an die Pylone geleitet. Von den Pylonen aus werden diese in Form von Druckkräften in den Baugrund geleitet. Durch die Neigung der Schrägkabel entstehen im Gegensatz zu einer Hängebrücke auch Druckkräfte in der Fahrbahnplatte. Diese Druckkräfte werden entweder durch die Druckkräfte auf der anderen Seite des Pylonen oder durch ein unverschiebliches Lager aufgenommen.

Im (lokalen) Quersystem werden die vertikalen Lasten in der Fahrbahnplatte über Biegung zu den Unterzügen und den Konsolen geleitet. Von dort aus werden die Lasten zu den Schrägkabeln geleitet.

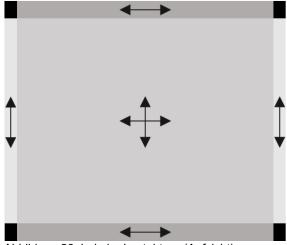


Abbildung 28: Lokaler Lastabtrag (Aufsicht)

Legende

Rot: Zugkräfte Blau: Druckkräfte Grün: Last

Hellgrau: Unterzüge
Grau: Fahrbahnplatte
Dunkelgrau: Konsole

Schwarz: Lagerungspunkte (Schrägkabelverankerung)

4.5 Materialauswahl

Aufgrund der hohen Druckkräfte im Träger und den Pylonen werden diese aus Ortbeton C35/45 hergestellt. Dieser wird seitens Gustav-Gull Platz und Zollstrasse an die Baustelle geliefert. Für das Kabelwerk werden Parallellitzen verwendet. Diese werden vom Unternehmen BBR VT INTERNATIONAL LTD fabriziert und wie der Beton zweiseitig an die Baustelle geliefert.

4.6 Fundation

Die Schrägkabelbrücke wird an vier Stellen aufgelagert. Die beiden inneren Pylonen und die äusseren Widerlager werden alle Flachfundiert. Eine Tiefenfundation kann hier verhindert werden da sich der «Sihl-Schotter» aufgrund der hohen Tragfähigkeit gut für Flachfundationen eignet. Die Fundamente befinden sich 8.0 m unter dem Gleisfeld oder 0.50 m unter der Rampen.

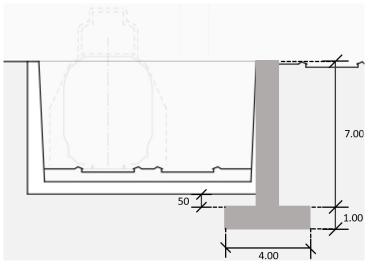


Abbildung 29: Ansicht Fundament: Pylon (seitens Zollstrasse)

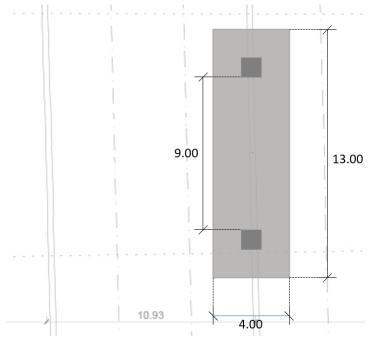


Abbildung 30: Aufsicht Fundament: Pylon (seitens Zollstrasse)

5 Bauverfahren

Das Bauverfahren spielt beim Entwurf des Negrellistegs eine zentrale Rolle. Aufgrund des Innenstädtischen Baus sollten die Lärmemissionen weitestgehend reduziert werden. Des Weiteren sollte die Beeinträchtigung der Gleise geringgehalten werden. Um dies zu ermöglichen wir der Bau des Negrellistegs mit der Freivorbauweise durchgeführt. Der Bau des Negrellistegs wird in sechs Phasen aufgeteilt. Die Gesamtdauer des Baus beträgt ca. ein Jahr.

5.1 Bauphase 1

In der ersten Bauphase wird der Bau der Schrägkabelbrücke vorbereitet. Zu Beginn werden Spundwände in den Boden gerammt, sodass die Baugrube für den Aushub gesichert ist. Dafür muss Seitens Zollstrasse ein Gleis gesperrt werden. Seitens Gustav-Gull Platz genügt der vorhandene Arbeitsraum. Danach beginnt der Aushub bis auf 7.50 m Tiefe ab OK Terrain. Zusätzlich müssen die Rampenwände ausgeschnitten werden damit genug Platz für den Versatz der Stützen vorhanden ist. Diese Arbeiten an den Rampenwänden werden in den Nachtsperren durchgeführt. Die Zeitdauer der Bauphase 1 liegt bei ca. einer Woche.

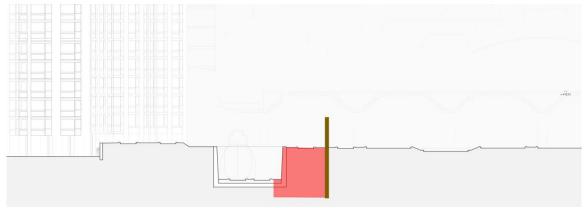


Abbildung 31: Bauphase 1

5.2 Bauphase 2

In der zweiten Bauphase werden die Fundamente und Pylonen gebaut. Hierfür werden vorfabrizierte Elemente verwendet, damit der Bau der Fundation und Stützen unterhalb des Terrains schnellstmöglich erfolgen kann. So kann das gesperrte Gleis rasch wieder freigegeben werden. Die vorfabrizierten Elemente werden mit schienengebundenen Kränen verbaut.

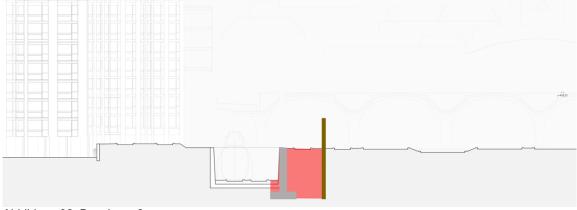


Abbildung 32: Bauphase 2

5.3 Bauphase 3

Die restlichen Teile der Pylone werden konventionell aus Ortbeton hergestellt. So wird der Gleisbereich vom Moment der Zuschüttung bis zum Abschluss des Baus nicht mehr gestört.

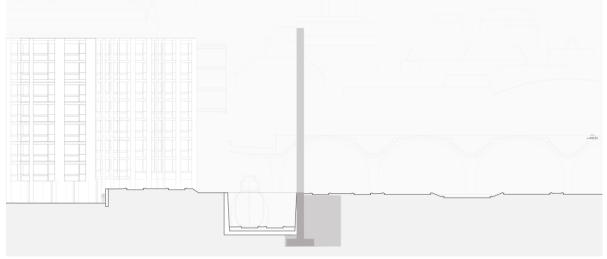


Abbildung 33: Bauphase 3

5.4 Bauphase 4

In der dritten Bauphase beginnt der Freivorbau des Negrellistegs. Dafür wird zu Beginn eine Arbeitsplattform aufgebaut, sodass die Arbeiten auch Tagsüber durchgeführt werden können. Pro Seite wird jeweils ein Feld betoniert, sodass die Brückenteile ständig ausbalanciert sind. In dieser Bauphase beginnt auch der Bau der seitlichen Widerlager.

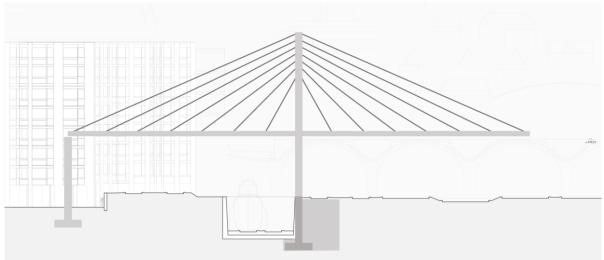


Abbildung 34: Bauphase 4

5.5 Bauphase 5

In der vierten Bauphase wird die Brücke mit den seitlichen Widerlager verbunden. Anschliessend wird das letzte Feld betoniert, sodass die beiden Brückenfelder miteinander verbunden werden.

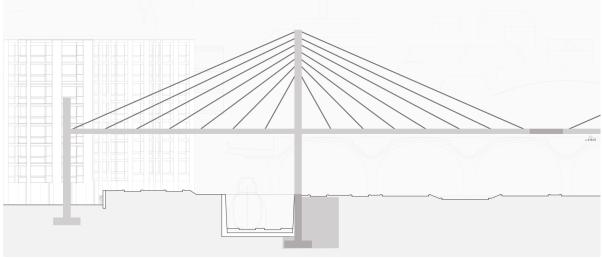


Abbildung 35: Bauphase 5

5.6 Bauphase 6

In der fünften Bauphase werden die letzten Arbeiten getätigt. Dazu gehört der Bau bzw. die Montage der Treppenelemente und des Personenlifts. Auf der Brücke wird der Belag gegossen und die Beleuchtung installiert.

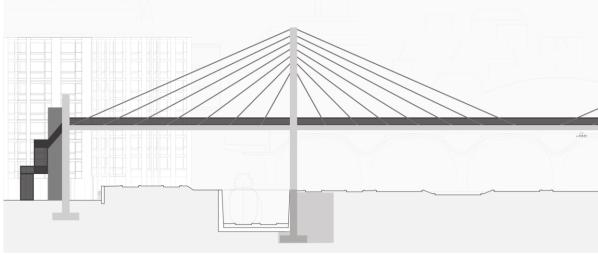


Abbildung 36: Bauphase 6

6 Modellbildung

Im folgenden Kapitel wird die Modellbildung im Axis dargestellt.

6.1 Tragwerksmodell

Für die Modellierung im Axis muss berücksichtigt werden, dass beispielsweise ein Stab von Knoten zu Knoten Modelliert wird.

Die Modellierung im AxisVM erfolgt durch Flächenelemente und Knoten (Stäbe). Bei Stäben muss also beachtet werden, dass die Biegemomente oder Querkräfte in den Querriegeln im AxisVM grösser sind als in der Realität. Des Weiteren muss beachtet werden, dass beispielsweise die Konsole im Axis-Modell nur mit der Fahrbahnplatte verbunden ist die Verbindung zum Unterzug entfällt. Durch die entfallenden Lagerbedingungen können sich grosse Torsionsmomente in der Konsole bilden, die nicht der Realität entsprechen.

6.1.1 Pylon

Für die Pylone und Querriegel wurden folgende Querschnitte gewählt:

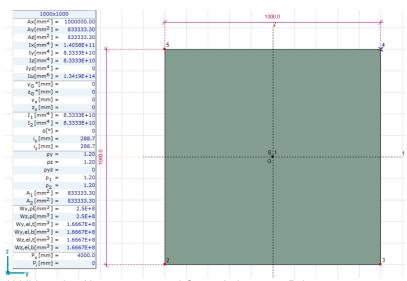


Abbildung 37: Abmessungen und Querschnittswerte: Pylone

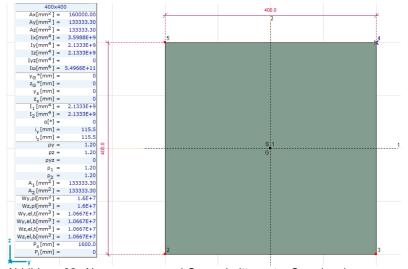


Abbildung 38: Abmessungen und Querschnittswerte: Querriegel

6.1.2 Kabelwerk

Die Abmessungen der Schrägkabel werden aus dem Entwurf übernommen. Für die Modellierung im AxisVM werden sie als druckschlaffe Fachwerkstäbe mit einem Querschnitt von 50 mm Durchmesser modelliert.

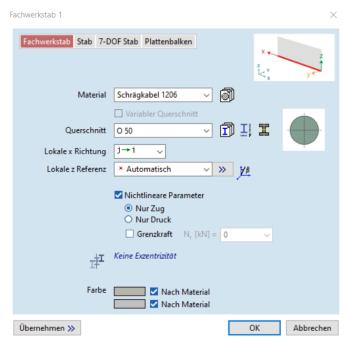


Abbildung 39: Modellierung als druckschlaffer Fachwerkstab

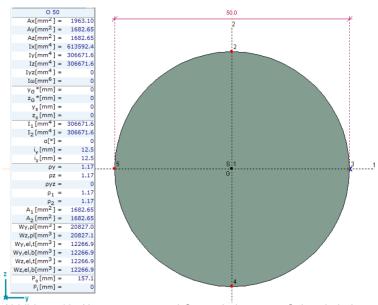


Abbildung 40: Abmessungen und Querschnittswerte: Schrägkabel

Für die Materialwahl wird aufgrund der Gewichtserhöhung durch den Korrosionsschutz und der PE-Hülle die Dichte des Materials erhöht bei der Bestimmung des Eigengewichts die Gewichtskraft des Kabels stimmt.

Tabelle 1: Materialkennwerte: Schrägkabel 1206

Materialbezeichnung	Modell	Ex (N/mm ²)	Poissonzahl v	Dichte ρ (kg/m³)
Schrägkabel 1206	Linear	195'000	0.30	9'500

6.1.3 Fahrbahnträger

6.1.3.1 Fahrbahnplatte

Aufgrund der Anordnung der Schrägkabel (5.00 m) kann die Fahrbahndicke geringgehalten werden. Das Quergefälle für die Entwässerung wird durch den Beton erzeugt, indem dieser in Brückenmitte 4 cm dicker ist als am Rand. Das Längsgefälle wird im AxisVM nicht mitberücksichtigt.

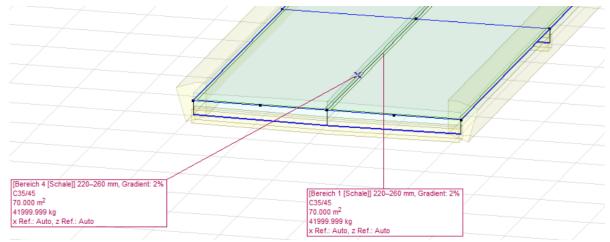


Abbildung 41: Modellierung: Fahrbahnplatte

6.1.3.2 Konsole

Die spezielle Form der Konsole ergibt sich dadurch, die Pylonen nach aussen geneigt sind und die Schrägkabel nicht vertikal verlaufen. Mit der Neigung wird versucht eine Vertikale Auflagefläche für das Schrägkabel zu schaffen, sodass die Kräfte sauber in die Konsole eingeleitet werden können. Der horizontale Teil des Querschnitts wird für die Befestigung der Brüstung an der Konsole verwendet.

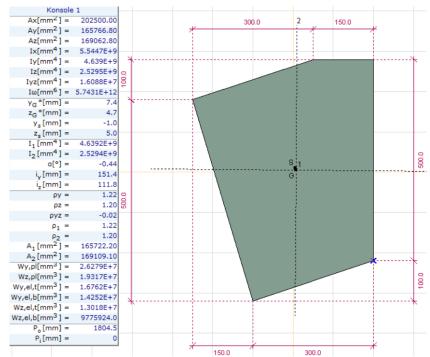


Abbildung 42: Abmessungen und Querschnittswerte: Konsole

6.1.3.3 Unterzug

Der Unterzug liegt quer zur Fahrbahn und hat eine Länge von 4.00 m. Dadurch dass dieser als Stab modelliert wurde ist er im Axis-Modell seitlich nicht an der Konsole befestigt und kann dementsprechend keine Kräfte dorthin übertragen. Dies muss bei Wertung der Auswirkungen berücksichtigt werden.

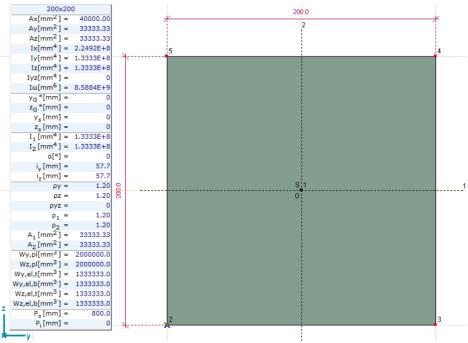


Abbildung 43: Abmessungen und Querschnittswerte: Unterzug

6.2 Auflagerbedingungen

Die Auflagerbedingungen werden wie folgt gewählt:

Tabelle 2: Auflagersteifigkeiten

Tabelle 2. Adilagerstelligkeiteri				
Bauteil	Richtung (Global)	Steifigkeit		
Pylon / Widerlager (Fusspun	kt)			
	K _x	1*10 ¹⁰ kN/m		
	K _y	1*10 ¹⁰ kN/m		
	K _z	1*10 ¹⁰ kN/m		
	K _{xx}	1*10 ⁹ kNm/rad		
	K _{yy}	1*10 ⁹ kNm/rad		
	K _{zz}	1*10 ⁹ kNm/rad		
Pylon / Widerlager (Auflager	ounkt für die Fahrbahn)			
	K _x	1*10 ¹ kN/m		
	K _y	1*10 ¹⁰ kN/m		
	K _z	1*10 ¹⁰ kN/m		
	K _{xx}	-		
	K _{yy}	-		
	K _{zz}	-		

6.3 Laststellungen

Im folgenden Kapitel werden einige Laststellungen dargestellt und beschrieben. Alle Laststellungen sind im Anhang D ersichtlich.

6.3.1 Nicht motorisierter Verkehr

Der nicht motorisierte Verkehr wird in drei verschiedenen Laststellungen im AxisVM angeordnet. So ist es möglich die Normalkräfte in den Schrägkabeln und auch die Durchbiegungen zu maximieren.

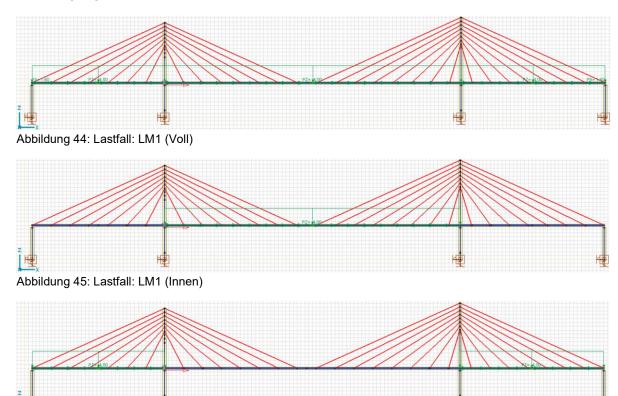
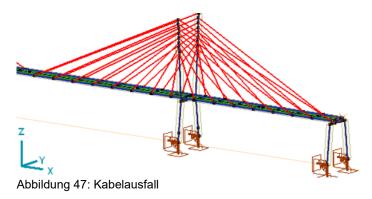



Abbildung 46: Lastfall: LM1 (Aussen)

6.3.2 Kabelausfall

Für das Gefährdungsbild «Kabelausfall» wird zuerst eine gewöhnliche statische Berechnung durchgeführt. Anhand dieser lässt sich erkennen welches Schrägkabel die grösste Beanspruchung besitzt, damit es in einem zweiten Modell entfernt werden kann. Mit dem neuen Modell wird anschliessend eine neue aussergewöhnliche Lastfallkombination erstellt werden, mit welcher die neuen Kabelkräfte bestimmt werden.

Das massgebende Kabel für den «Kabelausfall» ist das Schrägkabel rechts aussen.

HSLU T&A Bachelor-Thesis Seite 25

6.3.3 Wind (quer)

Die Windkräfte (quer) greifen die Brücke ausschliesslich am Horizontalsystem an.

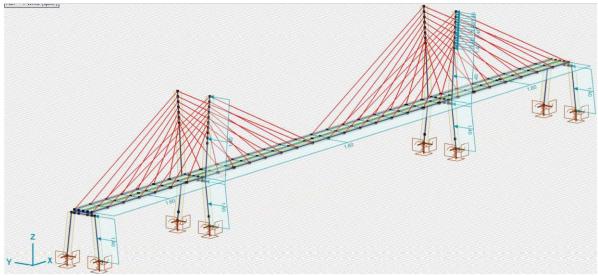


Abbildung 48: Lastfall: Wind (quer)

6.4 Vorgehen: Schwingungsanalyse

Für die Ermittlung der Eigenschwingungen und der dynamischen Anregung werden Schwingungsanalysen im AxisVM durchgeführt. Dabei wird zwischen den Eigenschwingungen in x-, y- und z-Richtung unterschieden, indem die Massenanteile aus den nicht gesuchten Komponenten deaktiviert werden. Für die dynamische Anregung infolge Lastmodell 1 werden ebenfalls Schwingungsanalysen in x-, y- und z-Richtung durchgeführt.

Tabelle 3: Lastkombinationen: Schwingungsanalyse; Dynamische Anregung (Nicht motorisierten Verkehr)

Name	Тур	EG	AL	Vorspannung	NMV LM1 (Voll)
Schwingungen x (längs)	-	1.00	1.00	1.00	-
Schwingungen y (quer)	-	1.00	1.00	1.00	-
Schwingungen z (vertikal)	-	1.00	1.00	1.00	-
Schwingungen infolge LM1 x	-	1.00	1.00	1.00	1.00
Schwingungen infolge LM1 y	-	1.00	1.00	1.00	1.00
Schwingungen infolge LM1 z	-	1.00	1.00	1.00	1.00

6.5 Erstellung der Lastkombinationen

Die Lastkombinationen werden manuell im AxisVM eingegeben. Hierfür werden die Lastbeiwerte (γ_G , γ_P und γ_{Q1}) und Reduktionsbeiwerte (ψ_0 , ψ_1 und ψ_2) aus der Projektbasis entnommen und eingefügt. Zu jeder Leiteinwirkung werden je drei Temperaturzustände als einzelne Begleiteinwirkungen hinzugefügt. Bei der Benennung der Lastkombinationen ist die erste Bezeichnung die Leiteinwirkung, die zweite und dritte sind die Begleiteinwirkungen (z.B. Temperatur + Wind).

Tabelle 4: Beispiel: Lastkombination

	abone ii Dolo iii Laatiteii mitatoii					
Name	EG	AL	Vorspannung	NMV LM1	Wind	Temperatur
				(Voll)	(quer)	(gleichmässig)
ULS LM1 (Voll),	1.35	1.35	1.20	1.5	0.60	0.60
Temp =						

6.6 Statische Berechnung

Dadurch dass sich die Kabel gegenseitig beeinflussen und der unsymmetrischen Gegebenheit des Negrellistegs ist eine nicht-lineare Berechnung wichtig. Für die Berechnung der Grenzzustände der Tragsicherheit (ULS) wird lediglich die geometrische Nichtlinearität für Fachwerkstäbe aktiviert. Die Inkrement-Funktion und maximale Anzahl der Iterationen werden bei beiden Berechnungen (ULS und SLS) nicht verändert.

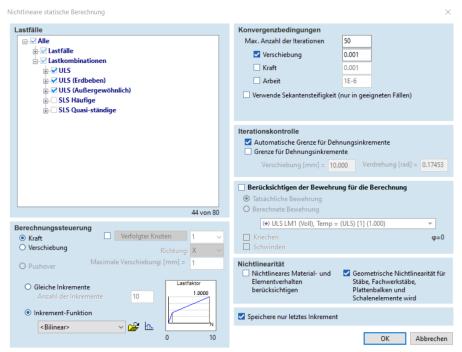


Abbildung 49: Einstellungen: Nichtlineare statische Berechnung (ULS)

Für die Grenzzustände der Gebrauchstauglichkeit werden zusätzlich zu den Fachwerkstäben auch die Nichtlinearitäten infolge Schwinden und Kriechen aktiviert.

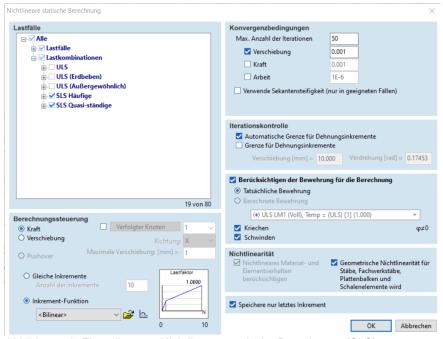


Abbildung 50: Einstellungen: Nichtlineare statische Berechnung (SLS)

7 Auswirkungen

Im folgenden Kapitel werden die Massgebenden Auswirkungen aufgezeigt.

7.1 Kräfte

7.1.1 Pylon

Im folgenden Kapitel werden nur die Einwirkungen in den Pylonen seitens Gustav-Gull Platz aufgezeigt.

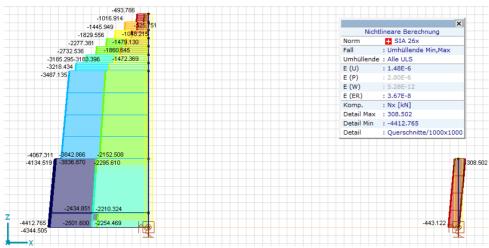


Abbildung 51: Umhüllende Min (Alle ULS): Normalkraft N_x in den Pylonen

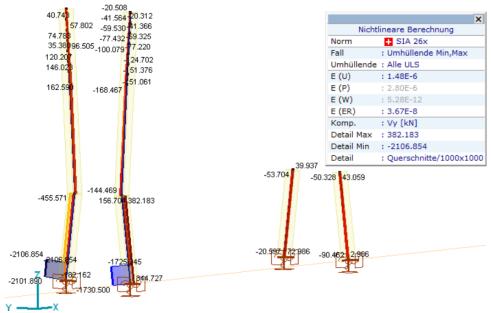


Abbildung 52: Umhüllende Min, Max (Alle ULS): Querkraft Vy in den Pylonen

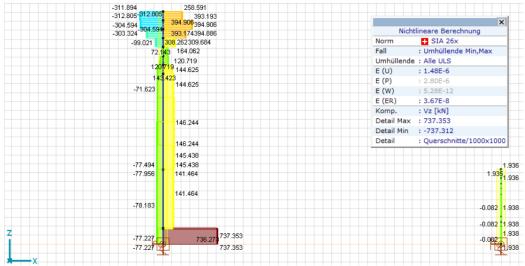


Abbildung 53: Umhüllende Min, Max (Alle ULS): Querkraft Vz in den Pylonen

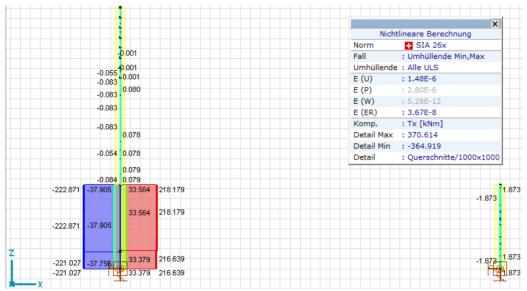


Abbildung 54: Umhüllende Min, Max (Alle ULS): Torsion Tx in den Pylonen

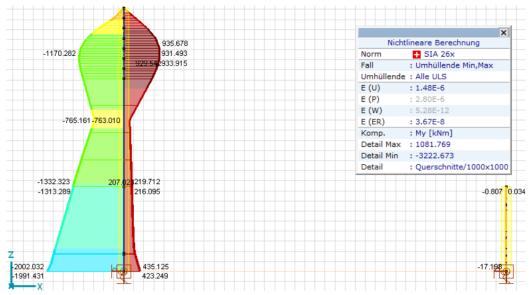


Abbildung 55: Umhüllende Min, Max (Alle ULS): Biegemoment My in den Pylonen

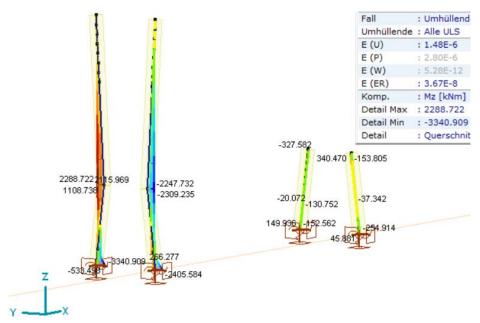


Abbildung 56: Umhüllende Min, Max (Alle ULS): Biegemoment Mz in den Pylonen

Aus der statischen Berechnung ergeben sich folgende Werte, die für die Nachweise verwendet werden (Von links nach rechts nummeriert):

Tabelle 5: Massgebende Werte: Schnittgrössen in den Pylonen

Bauteil	Nx (kN)	Vy (kN)	Vz (kN)	Tx	Му	Mz	Massgebende
				(kNm)	(kNm)	(kNm)	Kombination
Pylon 3	-4412.8	-415.7	66	-217	-1913.2	-1368.4	ULS LM1 (Voll),
							Temp -
Pylon 4	308.6	-50.4	1	-1	0	340.5	ULS LM1 (Innen),
							Temp -
Pylon 3	-2700.9	-2106.9	737.4	10.4	243.5	261.9	ULS Anprall 2
Pylon 3	-2569.7	-2090.8	-737.4	-10	1026.3	-3308.5	ULS Anprall 4
Pylon 2	-3939.4	315.6	132.8	370.6	-3008.8	72.1	ULS LM1 (Voll),
							Temp -
Pylon 2	-3999.2	309.5	117.9	368.3	-3222.7	640	ULS LM1 (Voll),
							Temp -
Pylon 3	-2742.6	-2101.9	737.4	10.4	-1019	-3341	ULS Anprall 2

7.1.2 Auflagerreaktion

Dadurch dass die Pylone und Widerlager im Boden eingespannt werden sind alle sechs Schnittgrössen zu betrachten.

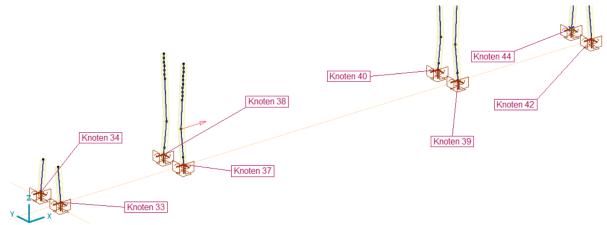


Abbildung 57 Bezeichnungen: Knotenauflager

Aus der statischen Berechnung ergeben sich folgende Werte, die für die Nachweise verwendet werden:

Tabelle 6: Massgebende Werte: Auflagerreaktionen an den Knotenauflager

Knoten	R _x	R _y	R _z	R _{xx}	R _{yy}	R _{zz}	Massgebende Kombination
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)	
40	737	2410	-2476	-3341	1011	131	ULS Anprall 2
40	64	933	-4333	-1368	1925	11	ULS LM1 (Voll), Temp -
42	1	94	20	-255	8	-2	ULS LM1 (Innen), Temp -
37	114	-779	-3935	640	3244	-15	ULS LM1 (Voll), Temp -
39	736	1451	-2444	-2406	1066	-139	ULS Anprall 1

Die ermittelten Auflagerreaktionen an den Knotenauflager werden in einem separaten Modell eingefügt. In diesem separaten Modell werden die Flächenauflagerreaktionen ermittelt:

Abbildung 58: Maximale Flächenauflagerkräfte

Aus der statischen Berechnung ergeben sich folgende Werte, die für die Nachweise verwendet werden:

Tabelle 7: Massgebende Werte: Auflagerreaktion am Flächenauflager

Streifenfundament	R _z	Massgebende Kombination
(Knoten 39 und 40)	- 462.53 kN/m ²	ULS LM1 (Voll), Temp -

7.1.3 Querriegel

Die Auswirkungen in den Querriegel werden separat von den Pylonen aufgezeigt da diese einen anderen Querschnitt besitzen. Nach der Berechnung ergeben sich drei massgebende Schnittgrössen N_x , M_y und V_z . Die Schnittgrössen T_x , M_z und V_y sind nahezu null und werden daher nicht dargestellt. Vollständigkeitshalber werden jedoch alle Schnittgrössen im Anhang D dargestellt.

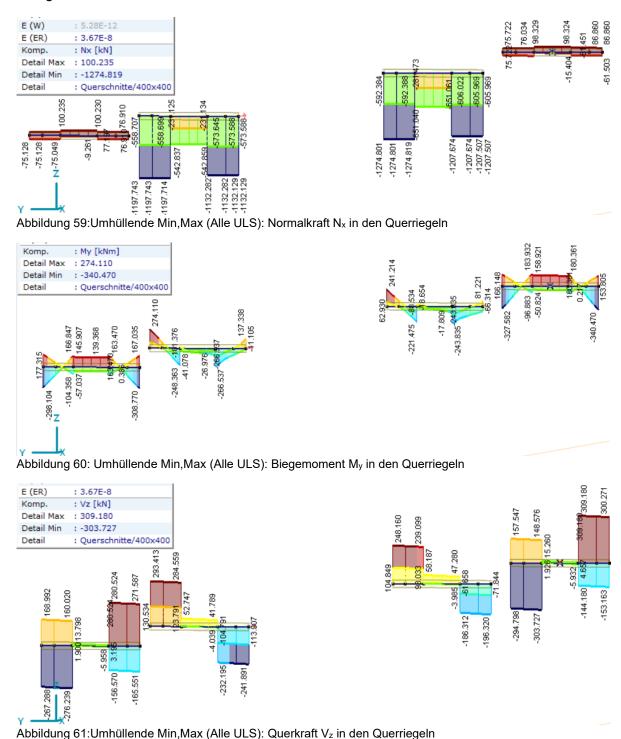


Abbildung of Continuine lide with, wax (Alle OLS). Querkian vz in den Quernegen

Aus der statischen Berechnung ergeben sich folgende Werte, die für die Nachweise verwendet werden (von links nach rechts nummeriert):

Tabelle 8: Massgebende Werte: Schnittgrössen in den Querriegeln

Bauteil	N _x	M _y	Vz	Massgebende Kombination
3	-1274.9 kN	-221.5 kN/m	-239.1 kN	ULS LM1 (Voll), Temp =
1	100.3 kN	-57.6 kN/m	6.2 kN	ULS LM1 (Aussen), Temp -
4	86.9 kN	-340.5 kN/m	300.3 kN	ULS LM1 (Innen), Temp -
2	-1048 kN	274.2 kN/m	267.9 kN	ULS Wind, LM1 (Voll) Temp =
4	87.3 kN	177.6 kN/m	309.2 kN	ULS LM1 (Innen), Temp -

7.1.4 Kabelwerk

Für die Auswirkungen in den Kabeln Darstellung der Umhüllenden Max aller ULS massgebend. Da die Kabel nur Zug aufnehmen können, ist die Darstellung der Umhüllenden Min nicht massgebend und entfällt deswegen.

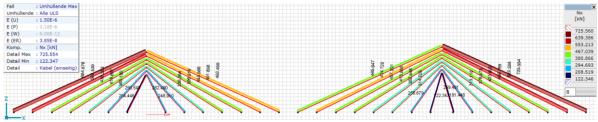


Abbildung 62: Umhüllende Max (Alle ULS): Normalkraft Nx in den Litzenkabeln

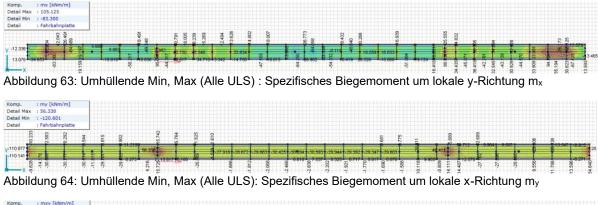
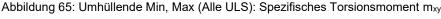

Aus der statischen Berechnung ergeben sich folgende Massgebende Werte:


Tabelle 9: Massgebende Werte: Normalkräfte in den Litzenkabeln


Bereich	N_x	Massgebende Kombination
Fachwerkstab 34 (Rechts aussen)	725.56 kN	ULS LM1 (Innen), Temp +

7.1.5 Fahrbahn

Aus der statischen Berechnung sind die Flächenbeanspruchungen der Fahrbahn ersichtlich. Für die Nachweise der Platte werden die Biegemomente in m_x, m_y und m_{xy} massgebend. Aus diesen Beanspruchungen lassen sich anschliessend die Bewehrungsmomente ausrechnen.

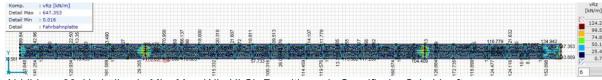


Abbildung 66: Umhüllende Min, Max (Alle ULS): Resultierende Spezifische Schubkraft vRz

Aus der statischen Berechnung ergeben sich folgende massgebende Werte:

Tabelle 10: Massgebende Werte: Flächenbeanspruchungen in der Fahrbahnplatte

Fall	m _x	m _y	m _{xy}	m_{Bxd}	m _{Byd}	Massgebende
	(kNm/m)	(kNm/m)	(kNm/m)	(kNm/m)	(kNm/m)	Kombination
m _{xBw} +	105.1	-21.6	0.4	105.5	-22.1	ULS LM1 (Innen), Temp
(Max)						-
m _{xBw} -	-83.3	-27.9	-0.5	-83.8	-28.4	ULS LM1 (Aussen),
(Min)						Temp +
m _{yBw} +	2.6	54.3	17.2	-14.6	71.5	ULS LM1 (Innen), Temp
(Max)						+
m _{yBw} -	-13.5	-120.1	21.4	-34.9	-141.5	ULS LM1 (Innen), Temp
(Min)						+

Wie in der Abbildung 66 ersichtlich sind die Schubkräfte bis auf wenige Spitzenwerte klein. Für den Nachweis der Plattenquerkraft werden die resultierenden spezifischen Schubkräfte im Abstand d_v/2 verwendet. Aufgrund dessen wird diese massgebende Schubkraft in der folgenden Tabelle dargestellt. Unrealistische Spitzenwerte die aus Problemen der Netzgenerierung kommen werden in der untenstehenden Tabelle nicht aufgeführt.

Tabelle 11: Massgebende Werte: Schubkraft in der Fahrbahnplatte

Tabelle	abelle 11. Massgebende Weite. Gendbitait in der Fahrbahnplatte						
Fall	v _{xz} (kN/m)	v _{yz} (kN/m)	v _{Rz} (kN/m)	v _{Rz,dv/2} (kN/m)	Massgebende		
					Kombination		
V _{Rz.max}	204.18	221.68	306.18	199.3	ULS LM1 (Voll), Temp -		

7.1.6 Konsole

Nach der statischen Berechnung ergeben sich drei massgebende Schnittgrössen N_x , M_y und V_z . T_x , M_z und V_y sind fast gleich null oder nicht relevant und werden in den Nachweisen vernachlässigt.

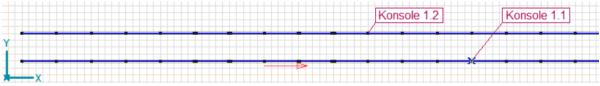


Abbildung 67: Bezeichnungen: Konsole

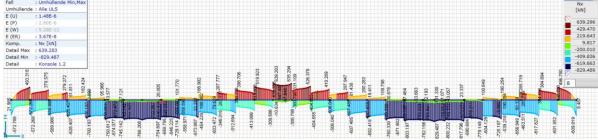


Abbildung 68: Umhüllende Min, Max (Alle ULS): Normalkraft N_x in der Konsole 1.2

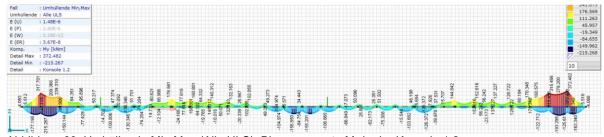


Abbildung 69: Umhüllende Min, Max (Alle ULS): Biegemomente My in der Konsole 1.2

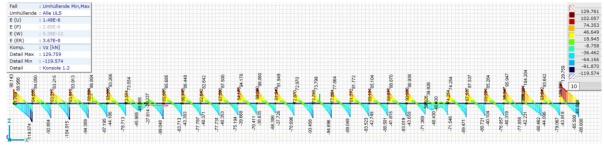


Abbildung 70: Umhüllende Min, Max (Alle ULS): Querkraft Vz in der Konsole 1.2

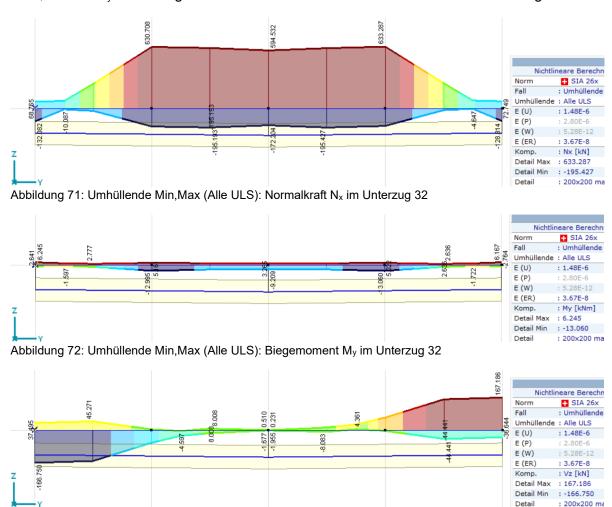

Aus der statischen Berechnung ergeben sich folgende Werte, die für die Nachweise verwendet werden:

Tabelle 12: Massgebende Werte: Schnittgrössen in den Konsolen (1.1 und 1.2)

Knoten	N _x	My	Vz	Massgebende Kombination
Knoten 10	-829.5 kN	66.5 kN/m	-35.8 kN	ULS LM1 (Voll), Temp -
Knoten 6	639.3 kN	6.5 kN/m	72.5 kN	ULS Temp +, LM1 (Innen)
Knoten 400	-163.4 kN	-215.5 kN/m	-3.7 kN	ULS LM1 (Aussen), Temp -
Knoten 118	138.7 kN	372.5 kN/m	129.8 kN	ULS LM1 (Innen), Temp +
Knoten 118	138.7 kN	372.5 kN/m	129.8 kN	ULS LM1 (Innen), Temp +

7.1.7 Unterzug

Nach der statischen Berechnung ergeben sich drei massgebende Schnittgrössen N_x , M_y und V_z . T_x , M_z und V_v sind fast gleich null und werden in den Nachweisen vernachlässigt.

Aus der statischen Berechnung ergeben sich folgende Werte, die für die Nachweise verwendet werden:

Tabelle 13: Massgebende Werte: Schnittgrössen in den Unterzügen

Abbildung 73: Umhüllende Min, Max (Alle ULS): Querkraft Vz im Unterzug 32

Bauteil	Nx	Vz	My	Massgebende Kombination
U 8	-310.5 kN	33.8 kN	5 kNm	ULS LM1 (Voll), Temp +
U 32	633.3 kN	63 kN	-12.7 kNm	ULS LM1 (Innen), Temp =
U 32	-128.9 kN	167.2 kN	6.2 kNm	ULS LM1 (Innen), Temp +
U 32	633 kN	62.8 kN	-13.1 kNm	ULS LM1 (Innen), Temp -

7.2 Durchbiegungen

7.2.1 Durchbiegungen infolge häufiger Lastfälle

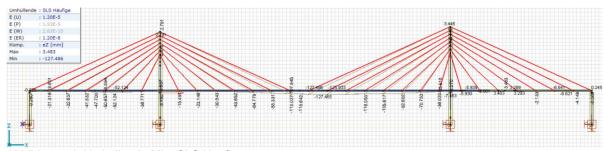


Abbildung 74: Umhüllende Min: SLS Häufige

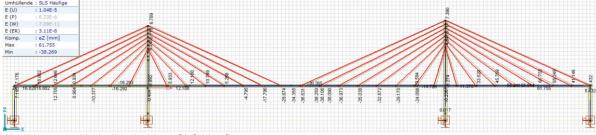


Abbildung 75: Umhüllende Max: SLS Häufige

Tabelle 14: Massgebende Werte: Durchbiegung infolge häufiger Lastfälle

Bereich	Max. Wert	Massgebende Kombination
Inneres Feld	-127.5 mm	SLS Häufige LM1 (Innen), Temp -
35 m (Linkes Feld)	-52.1 mm	SLS Häufige LM1 (Voll), Temp -
38 m (Rechtes Feld)	61.7 mm	SLS Häufige LM1 (Innen), Temp -

7.2.2 Durchbiegungen infolge quasi-ständiger Lastfälle

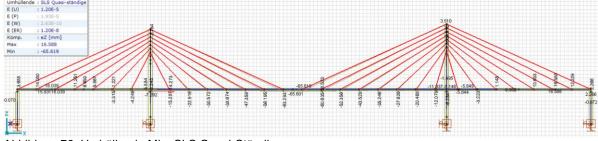


Abbildung 76: Umhüllende Min: SLS Quasi-Ständig

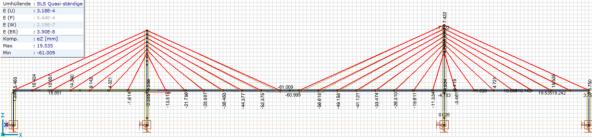


Abbildung 77: Umhüllende Max: SLS Quasi-Ständig

Tabelle 15: Massgebende Werte: Durchbiegung infolge quasi-ständiger Lastfälle

abone for macegoremas fronte: 2 aremotegang micigo quaer etamaige: 2 actions								
Bereich	Max. Wert	Massgebende Kombination						
Inneres Feld	-65.7 mm	SLS Quasi-Ständige Temp -						
35 m (Linkes Feld)	18.6 mm	SLS Häufige LM1 (Voll), Temp -						
38 m (Rechtes Feld)	19.4 mm	SLS Häufige LM1 (Aussen), Temp -						

7.3 Schwingungen

Die Berechnung der Schwingungen erfolgte mit neun Schwingungsformen. Dabei gab es Schwingungsformen mit grösseren und kleineren modalen Massenanteilen. Für die Nachweise werden nur die Schwingungsformen mit hohen Massenanteilen berücksichtigt. Die erforderliche Summe aller modalen Massenanteile wird auf 80 % festgelegt. Aus der Schwingungsanalyse ergeben sich folgende Werte, die für die Nachweise verwendet werden:

Tabelle 16: Massgebende Werte: Schwingungsanalyse (Eigenschwingungen und Dynamische Anregung)

Lastkombination	Richtung	Frequenz	Massenanteil in %	Summe
Schwingungen (längs)	X			
1. Form		0.29 Hz	89.6 %	
				<u>89.6 %</u>
Schwingungen (quer)	Υ			
1. Form		0.85 Hz	45.3 %	
6. Form		3.12 Hz	20.4 %	
7. Form		3.36 Hz	22.1 %	
				<u>87.8 %</u>
Schwingungen (vertikal)	Z			
4. Form		2.28 Hz	40.5 %	
7. Form		3.10 Hz	39.6 %	
				<u>80.1 %</u>
Schwingungen infolge LM1	X			
1. Form		0.25 Hz	88.2 %	
				<u>89.6 %</u>
Schwingungen infolge LM1	Υ			
1. Form		0.82 Hz	49.5 %	
6. Form		2.76 Hz	21.3 %	
7. Form		2.99 Hz	21.1 %	
				<u>91.2 %</u>
Schwingungen infolge LM1	Z			
3. Form		1.96 Hz	40.5 %	
7. Form		2.65 Hz	39.6 %	
_				<u>80.1 %</u>

8 Nachweise der Tragsicherheit.

Im folgenden Kapitel werden die wichtigsten Nachweise verkürzt aufgezeigt. Die detaillierten Nachweise sind im Anhang D ersichtlich.

8.1 Pylone

Die Nachweise in diesem Kapitel beziehen sich ausschliesslich auf die Stützen und Nadelstiele der Pylone. Die Querriegel werden im nächsten Kapitel separat nachgewiesen. Alle Nachweise der Pylonen, bis auf den Querkraftnachweis, werden in zwei Teile unterteilt. Der obere Nachweis bezieht sich auf die nach aussen geneigten Nadelstiele und der untere Nachweis auf die eingespannte Stütze.

8.1.1 Nachweise: Knicken

Die Bestimmung der Mindest- und Maximalbewehrung erfolgt nach der SIA 262:2013 Ziff. 5.5.4.2 und 5.5.4.5.

$$A_{s,min} \ge 0.6 \% * A_c = \frac{0.6}{100} * (1'000 \text{ mm})^2 = 6'000 \text{ mm}^2$$

$$A_{s,max} \le 8.0 \% * A_c = \frac{8}{100} * (1'000 \text{ mm})^2 = 80'000 \text{ mm}^2$$

Für die Nachweise wurde folgende Bewehrung gewählt:

$$A_s = 24 * \emptyset 30 = 24 * 707 \text{ mm}^2 = 16'968 \text{ mm}^2$$

Dadurch dass der Bewehrungsquerschnitt zwischen der Mindest- und Maximalbewehrung liegt, dürfen die Pylonen konventionell hergestellt werden.

Oben:

Aus den Gleichungen 74 – 76 ergeben sich folgende Werte die Exzentrizität:

Exzentrizität infolge Imperfektionen:	<u>e_{0d} = 41 mm</u>	(74)
Exzentrizität 1. Ordnung:	$e_{1d} = 603 \text{ mm}$	(75)
Exzentrizität 2. Ordnung:	$e_{2d} = 506 \text{ mm}$	(76)

Somit ergibt die maximale Exzentrizität:

$$e_d = e_{0d} * e_{1d} * e_{2d} = 41 \text{ mm} + 603 \text{ mm} + 506 \text{ mm} = 1.15 \text{ m} (73)$$

Der Bemessungswert des Biegemoments wird wie folgt bestimmt:

$$M_d = -N_d * e_d = -(-3822 \text{ kN}) * 1.15 \text{ m} = 4395.3 \text{ kNm} (72)$$

Mit den entnommenen Werten in den Q-Diagrammen kann der Biegewiderstand ausgerechnet werden:

$$M_{Rd} = -m_{Rd} * b * h^2 * f_{cd} = -(-0.21) * 1000^3 * 22 = 4620 \text{ kNm}$$

Somit lautet der Nachweis:

$$\frac{M_d}{M_{Rd}} = \frac{4395.3}{4620} = 0.95 \le 1.0 \rightarrow \text{Nachweis i. O}$$

Unten:

Aus den Gleichungen 74 – 76 ergeben sich folgende Werte die Exzentrizität:

Exzentrizität infolge Imperfektionen:	$e_{0d} = 32 \text{ mm}$	(74)
Exzentrizität 1. Ordnung:	$e_{1d} = 515 \text{ mm}$	(75)
Exzentrizität 2. Ordnung:	$e_{2d} = 9.3 \text{ mm}$	(76)

Somit ergibt die maximale Exzentrizität:

$$e_d = e_{0d} * e_{1d} * e_{2d} = 32 \text{ mm} + 515 \text{ mm} + 9.3 \text{ mm} = 0.556 \text{ m} (73)$$

Der Bemessungswert des Biegemoments wird wie folgt bestimmt:

$$M_d = -N_d * e_d = -(-4345 \text{ kN}) * 0.556 \text{ m} = 2415.8 \text{ kNm} (72)$$

Mit den entnommenen Werten in den Q-Diagrammen kann der Biegewiderstand ausgerechnet werden:

$$M_{Rd} = -m_{Rd} * b * h^2 * f_{cd} = -(-0.22) * 1000^3 * 22 = 4840 \text{ kNm}$$

Somit lautet der Nachweis:

$$\frac{M_d}{M_{Rd}} = \frac{2415.8}{4840} = 0.5 \le 1.0 \rightarrow \text{Nachweis i. O}$$

8.1.2 Nachweis: Biegung und Normalkraft

Der Nachweis für Biegung und Normalkraft erfolgt mit einer M-N-Interaktion im AxisVM. Hierfür werden die kürzeren Pylone betrachtet da diese eine geringere Normalkraft und ein grösseres Biegemoment aufweisen. Die Querschnittsparameter für diese Berechnung sind:

Betonüberdeckung: $c_{nom} = 40 \text{ mm}$

Bewehrung: $A_s = 24 * \varnothing 30 = 16'965 \text{ mm}^2$

Die massgebenden Nachweise am oberen Teil des Pylonen lauten:

$$\frac{N_d}{N_{Rd}} = \frac{3532}{4514} = 0.76 \le 1.0 \rightarrow \text{Nachweis i. 0}$$

$$\frac{M_d}{M_{Rd}} = \frac{2944}{3744} = 0.787 \le 1.0 \rightarrow \text{Nachweis i. O}$$

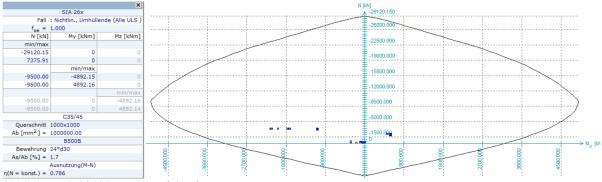


Abbildung 78: M-N-Interaktion (oben)

Die massgebenden Nachweise am unteren Teil des Pylonen lauten:

$$\frac{N_d}{N_{Rd}} = \frac{2570}{2848} = 0.902 \le 1.0 \rightarrow \text{Nachweis i. O}$$

$$\frac{M_d}{M_{Rd}} = \frac{3464}{3780} = 0.916 \le 1.0 \rightarrow \text{Nachweis i. O}$$

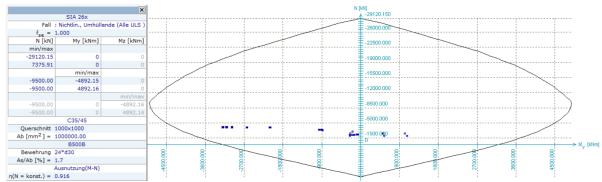


Abbildung 79: M-N-Interaktion (unten)

8.1.3 Nachweis: Querkraft

Die massgebende Kraft für den Nachweis der Querkraft im Pylon ist:

$$V_{Ed} = -2106.9 \text{ kN}$$
 (ULS Anprall 2)

Für die Bemessungssituation «Anprall» darf gemäss SIA 262:2013 Kapitel 4.2.2.3, f_{sd} um 15% erhöht werden. Der Wert für f_{sd,A} für diesen Nachweis beträgt somit:

$$f_{sd,A} = f_{sd} * 1.15 = 435 * 1.15 = 500 \text{ N/mm}^2$$

Mit der Gleichung 43 kann somit die erforderliche Bügelbewehrung ausgerechnet werden.

$$a_{sw,erf} = \frac{V_{Ed}}{z * \cot \alpha * f_{sd,A}} = \frac{2106.9 * 10^3}{0.84 \; m * \cot 30^\circ * 500} = 2897 \; \frac{mm^2}{m}$$

Wahl der zweischnittigen Bügelbewehrung:

$$a_{sw} = 2 * \emptyset 14/100 \text{mm} = 2 * 1540 \frac{\text{mm}^2}{\text{m}} = 3080 \frac{\text{mm}^2}{\text{m}}$$

Mit der Bügelbewehrung a_{sw} kann der Widerstand der Querkraftbewehrung $V_{Rd,s}$ und der Widerstand der Stütze $V_{Rd,c}$ mit den Gleichungen 43 und 45 ermittelt werden:

$$V_{Rd,s} = a_{sw} * z * \cot \alpha * f_{sd,A} = 3080 * 0.84 * \cot 30^{\circ} * 500 = 2239.8 \text{ kN}$$

$$V_{Rd,c} = b_w * z * k_c * f_{cd} * \sin \alpha * \cos \alpha = 1000 * 840 * 0.55 * 22 * \sin 30^\circ * \cos 30^\circ = 4401.14 \text{ kN}$$

Für den Nachweis wird der kleinere Wert benutzt $\rightarrow V_{Rd,s}$ da $V_{Rd,s} < V_{Rd,c}$:

$$\frac{V_{Ed}}{V_{Rd,s}} = \frac{2106.9}{2239.8} = 0.94 \le 1.0 \rightarrow \text{Nachweis i. 0}$$

8.1.4 Nachweis: Gabelverankerung

Aus der Tabelle für BBR-Gabelverankerungen wird die Baustahlsorte S355 und die Dicke der Stahlplatte (t = 74 mm) vorgegeben.

Für den Nachweis dieser Stahlplatte wird die Bruchlast F_0 = 3348 kN als massgebende Kraft und die Höhe der Stahlplatte h =130 mm ausgesucht. Der Normalkraftwiderstand der Stahlplatte wird nach SIA 263:2013 (39) bestimmt:

$$N_{Rd} = \frac{0.9 * f_u * A_{net}}{\gamma_{M2}} = \frac{0.9 * 490 * 130 * 74}{1.25} = 3393.94 \text{ kN}$$

Somit lautet der Nachweis der Gabelverankerung:

$$\frac{F_0}{N_{Rd}} = \frac{3348}{3393.94} = 0.986 \le 1.0 \rightarrow \text{Nachweis i. O}$$

8.1.5 Nachweis: Lasteinleitung Schrägkabel - Pylon

Damit die Lasteinleitung in den Pylonen funktioniert, dürfen die Spannungen aus den Schrägkabeln die maximale Betonspannung nicht übersteigen:

$$\sigma_{\rm c} \leq f_{\rm cd}$$

Die Spannungen aus den Kabelkräften lassen sich durch die Aufstandsfläche A der Gabelverankerung und der grössten Auswirkung F im Pylon berechnen:

$$\sigma_{\rm c} = \frac{F}{A} = \frac{500 * 10^3}{74'000} = 6.76 \, N/mm^2$$

Mit f_{cd} = 22 N/mm² lautet der Nachweis:

$$\frac{\sigma_{c}}{f_{cd}} = \frac{6.76}{22} = 0.307 \le 1.0 \rightarrow \text{Nachweis i. 0}$$

8.2 Querriegel

Die Nachweise für den Querriegel sind der zweite Teil der Nachweise für die Pylone. Dadurch dass es nur einen Typ von Querriegel (0.4 m x 0.4 m) gibt wird hier immer nur der massgebende Fall betrachtet.

8.2.1 Nachweis: Biegung

Der Biegenachweis für die Querriegel wird im AxisVM geführt. Die Querschnittsparameter für diese Berechnung sind:

Betonüberdeckung: $c_{nom} = 40 \text{ mm}$ Bügelbewehrung: $\emptyset_B = 14 \text{ mm}$

Mit der Zugbewehrung 3 * $Ø30 = 2121 \text{ mm}^2$ lautet der Nachweis für die maximale Zugbewehrung oben:

$$\frac{M_{Ed}}{M_{Rd}} = \frac{220.66}{363} = 0.61 \le 1.0 \rightarrow \text{Nachweis i. O}$$

Mit der Zugbewehrung 3 * \emptyset 30 = 2121 mm² lautet der Nachweis für die maximale Zugbewehrung unten:

$$\frac{M_{Ed}}{M_{Rd}} = \frac{254.372}{363} = 0.7 \le 1.0 \rightarrow \text{Nachweis i. O}$$

8.2.2 Nachweis: Querkraft

Die massgebende Kraft für den Nachweis der Querkraft im Querriegel 4 ist:

$$V_{Ed} = 309.2 \text{ kN}$$
 (ULS LM1 (Innen), Temp -)

Mit der Gleichung 43 kann somit die erforderliche Bügelbewehrung ausgerechnet werden.

$$a_{\text{sw,erf}} = \frac{V_{\text{Ed}}}{z * \cot \alpha * f_{\text{ed}}} = \frac{309.2 * 10^3}{0.3 \text{ m} * \cot 45^\circ * 435} = 2369.4 \text{ mm}^2/\text{m}$$

Wahl der zweischnittigen Bügelbewehrung:

$$a_{sw} = 2 * \emptyset 14/100 \text{mm} = 2 * 1540 \frac{\text{mm}^2}{\text{m}} = 3080 \frac{\text{mm}^2}{\text{m}}$$

Mit der Bügelbewehrung a_{sw} kann der Widerstand der Querkraftbewehrung V_{Rd,s} und der Widerstand des Querriegels V_{Rd,c} mit den Gleichungen 43 und 45 ermittelt werden:

$$V_{Rd,s} = a_{sw} * z * \cot \alpha * f_{sd,A} = 3080 * 0.3 * \cot 45^{\circ} * 435 = 401.95 \text{ kN}$$

$$V_{Rd,c} = b_w * z * k_c * f_{cd} * \sin \alpha * \cos \alpha = 400 * 300 * 0.55 * 22 * \sin 45^{\circ} * \cos 45^{\circ} = 726 \text{ kN}$$

Für den Nachweis wird der kleinere Wert benutzt $\rightarrow V_{Rd,s}$ da $V_{Rd,s} < V_{Rd,c}$:

$$\frac{V_{Ed}}{V_{Rds}} = \frac{309.2}{402} = 0.77 \le 1.0 \rightarrow \text{Nachweis i. O}$$

8.3 Fundation

Im AxisVM sind die Fundamente als einzelne Einspannungen modelliert. Diese Einspannung auch realisiert werden kann, muss das Fundament gross und schwer genug sein die Biegemomente aufzunehmen. Des Weiteren fungiert ein einzelnes Fundament als Zugband sodass ein Gleitnachweis entfällt. Im folgenden Kapitel wird die Tragfähigkeit der Fundamente nachgewiesen.

8.3.1 Nachweis: Tragfähigkeitsprobleme

Damit der Nachweis der Tragfähigkeitsprobleme erfüllt ist muss folgende Bedingung eingehalten werden:

$$F = \frac{\sigma_f}{\sigma_{\text{vorh.}}} \ge 1.0$$

Die massgebende Auflagerreaktion für den Nachweis der Tragfähigkeitsprobleme ist:

$$R_z = -4333 \text{ kN} =$$
 (ULS LM1 (Voll), Temp -)

Diese wird zusammen mit einem Fundament im AxisVM eingegeben und erneut berechnet, sodass die Flächenauflagerkräfte ermittelt werden:

$$R_{z,neu} = -462.53 \text{ kN/m}^2 = \sigma_{vorh.}$$

Das Fundament ist auf der Rampenaussenseite 7.0 m eingebunden und auf der Rampeninnenseite 0.50 m. Daher wird für die Bestimmung von σ_f die Einbindetiefe 0.50 m berücksichtigt:

$$\sigma_f = (\gamma * t) * N_q + \frac{1}{2} * \gamma * N_\gamma = (20.5 * 0.5) * 29.44 + 0.5 * 20.5 * 34.53 = 655.69 \text{ kN/m}^2$$

Somit beträgt der Nachweis:

$$F = \frac{\sigma_f}{\sigma_{vorb}} = \frac{655.69}{462.53} = 1.42 \ge 1.0 \rightarrow Nachweis i. 0$$

8.4 Kabelwerk

Im folgenden Kapitel werden die Nachweise für das Kabelwerk geführt. Der Nachweis für Lasteinleitung in die Pylonen und Konsole werden in diesem Kapitel nicht aufgezeigt. Diese sind im Kapitel xx bzw. xx zu finden.

8.4.1 Nachweis: Tragvermögen

Nach Christian Menn ist das Tragvermögen der Kabel aufgrund der grössten Stahlspannungen aus ständigen und Verkehrslasten wie folgt nachzuweisen:

$$\sigma_{T.max}(g + q) \le 0.45 * f_{p0.1k} \text{ oder } 0.5 * f_{pk}$$

Aus der Bruchlast und der Querschnittsfläche der Litzenkabel wird f_{pk} wie folgt bestimmen:

$$f_{pk} = \frac{Bruchlast}{A} = \frac{3348 * 10^3}{1800} = 1860 \text{ N/mm}^2$$

Die maximalen Stahlspannungen infolge ständigen und Verkehrslasten werden mit den Kabelkräften im Axis und der Querschnittsfläche ausgerechnet:

$$\sigma_{T,max} = \frac{N_{x,max}}{A} = \frac{726 * 10^3}{1800} = 403.5 \text{ N/mm}^2$$

Somit lautet der Nachweis:

$$\sigma_{T,max} = 403.5 \le 930 = 0.5 * f_{pk} \rightarrow \text{Nachweis i. 0}$$

8.5 Fahrbahn

Die Nachweise in diesem Kapitel beziehen sich ausschliesslich auf die Fahrbahnplatte. Die Konsolen und Unterzüge werden in den nächsten Kapitel separat nachgewiesen.

8.5.1 Nachweis: Biegung

Der Biegenachweis der Fahrbahnplatte erfolgt mit der Normalmomenten – Fliessbedingung. Hierfür werde vier Massgebende Punkte im AxisVM ausgesucht und nachgewiesen. In diesem Kapitel wird nur der massgebende Nachweis aufgezeigt.

Das nachzuweisende Bewehrungsmoment besitzt den Wert m_{yBw} = -141.5 kNm/m. Da es sich um einen Spitzenwert handelt muss dieser noch abgeglättet werden.

Das neue Bewehrungsmoment myBw- und die statische Höhe ds,q,u betragen:

$$m_{yBw}$$
 = -120 kNm/m und die $d_{s.a.u}$ = 157 mm

Mit einer Biegebewehrung von Ø 20 / 150 mm = 2090 mm² beträgt der Biegewiderstand:

$$m_{yRd} = A_s * f_{sd} * \left(d_{s,q,u} - \frac{A_s * f_{sd}}{2*b*f_{cd}}\right) = 2090*435*\left(157 - \frac{2090*435}{2*1000*22}\right) = 123.95 \, \text{kNm/m}$$

Der Nachweis lautet somit:

$$\frac{\rm m_{yBw^-}}{\rm m_{vRd}} = \frac{120}{123.95} = 0.97 \le 1.0 \to {\rm Nachweis~i.~O}$$

8.5.2 Nachweis: Querkraft

Der Nachweis der Querkraft für die Fahrbahnplatte ist erfüllt, wenn folgende Bedingung eingehalten ist:

$$\frac{V_0}{V_{Rd}} \le 1.0 (35)$$

Mit den berechneten und entnommenen Werten aus der SIA 262:2013 ergibt sich:

 V_0 = 55 kN/m (Aus AxisVM; siehe Anhang D) V_{Rd} = 134.82 kN/m (nach SIA 262:2013 Kap. 4.3.3.2 berechnet; siehe Anhang D)

Der Nachweis der Querkraft lautet somit:

$$\frac{V_0}{V_{Rd}} = \frac{55}{134.82} = 0.4 \le 1.0 \rightarrow \text{Nachweis i. 0}$$

8.6 Konsole

Die Nachweise für die Konsole sind der zweite Teil der Nachweise für die Fahrbahn. Dadurch dass die Konsole eine spezielle Form besitzt, muss diese für die Nachweise im AxisVM vereinfacht werden. Der Konsole werden für die Nachweise eine Breite von b = 375 mm und eine Höhe von h = 540 mm zugewiesen.

8.6.1 Nachweis: Biegung

Für den Nachweis der Biegung sind zwei Lastfälle massgebend:

$$M_{y,min}$$
 = -372.5 kNm (ULS LM1 (Innen), Temp +)
 $M_{y,max}$ = 215.5 kNm (ULS LM1 (Aussen), Temp -)

Der Biegewiderstand ohne Berücksichtigung der Normalkraft beträgt für M_{v,min}:

$$M_{Rd,1} = A_s * f_{sd} * (d_s - 0.425 * x) = 2655 * 435 * (462 - 0.425 * 164.7) = 452.7 \text{ kNm}$$

Somit lautet der Nachweis:

$$\frac{M_{y,min}}{M_{Rd,1}} = \frac{372.5}{452.7} = 0.82 \le 1.0 \rightarrow \text{Nachweis i. O}$$

Der Biegewiderstand ohne Berücksichtigung der Normalkraft beträgt für M_{y,max}:

$$M_{Rd,2} = A_s * f_{sd} * (d_s - 0.425 * x) = 1593 * 435 * (462 - 0.425 * 98.8) = 291 \text{ kNm}$$

Somit lautet der Nachweis:

$$\frac{M_{y,max}}{M_{Pd,2}} = \frac{215.5}{291} = 0.74 \le 1.0 \rightarrow \text{Nachweis i. 0}$$

8.6.2 Nachweis: Querkraft

Die massgebende Kraft für den Nachweis der Querkraft in der Konsole ist:

$$V_{Ed} = 129.8 \text{ kN}$$
 (ULS LM1 (Innen), Temp +)

Mit der Gleichung 43 kann somit die erforderliche Bügelbewehrung ausgerechnet werden.

$$a_{sw,erf} = \frac{V_{Ed}}{z * \cot \alpha * f_{sd}} = \frac{129.8 * 10^3}{0.412 \text{ m} * \cot 45^\circ * 435} = 714.25 \text{ mm}^2/\text{m}$$

Wahl der zweischnittigen Bügelbewehrung:

$$a_{sw} = 2 * \emptyset 10/150 \text{mm} = 2 * 523 \text{mm}^2/_{m} = 1046 \text{mm}^2/_{m}$$

Mit der Bügelbewehrung a_{sw} kann jetzt der Widerstand der Querkraftbewehrung $V_{Rd,s}$ und der Widerstand der Konsole $V_{Rd,c}$ mit den Gleichungen 43 und 45 ermittelt werden:

$$V_{Rd,s} = a_{sw} * z * \cot \alpha * f_{sd,A} = 1046 * 0.412 * \cot 45^{\circ} * 435 = 187.46 \text{ kN}$$

$$V_{Rd,c} = b_w * z * k_c * f_{cd} * \sin \alpha * \cos \alpha = 375 * 412.2 * 0.55 * 22 * \sin 45^\circ * \cos 45^\circ = 935.2 \text{ kN}$$

Für den Nachweis wird der kleinere Wert benutzt $\rightarrow V_{Rd,s}$ da $V_{Rd,s} < V_{Rd,c}$:

$$\frac{V_{Ed}}{V_{Rd,s}} = \frac{129.8}{187.46} = 0.69 \le 1.0 \rightarrow \text{Nachweis i. O}$$

8.6.3 Nachweis: Abscheren Fahrbahnplatte - Konsole

Der Nachweis fürs Abscheren zwischen Fahrbahnplatte und Konsole ist erfüllt, wenn folgende Bedingung eingehalten ist:

$$\frac{V_0}{V_{Rd}} \le 1.0 (35)$$

Mit den berechneten und entnommenen Werten aus der SIA 262:2013 ergibt sich:

 V_0 = 129.9 kN (von Hand berechnet; siehe Anhang D) V_{Rd} = 155.3 kN (nach SIA 262:2013 Kap. 4.3.3.2 berechnet; siehe Anhang D)

Der Nachweis für die Lasteinleitung ist somit:

$$\frac{V_0}{V_{Rd}} = \frac{129.9}{155.3} = 0.84 \le 1.0 \rightarrow \text{Nachweis i. O}$$

8.6.4 Nachweis: Lasteinleitung Schrägkabel – Konsole

Der Nachweis für die Lasteinleitung von der Konsole ins Schrägkabel ist erfüllt, wenn folgende Bedingung eingehalten ist:

$$\frac{\sigma_{c3}}{k_c * f_{cd}} \le 1.0$$

Mit den berechneten und entnommenen Werten aus der SIA 262:2013 ergibt sich:

 σ_{c3} = 20.9 N/mm² (von Hand berechnet; siehe Anhang D) k_c = 1.0 (SIA 262:2013 Kap. 4.2.1.7) f_{cd} = 22.0 N/mm² (SIA 262:2013 Tabelle 8)

Der Nachweis für die Lasteinleitung beträgt somit:

$$\frac{\sigma_{c3}}{k_c * f_{cd}} = \frac{20.9}{1.0 * 22.0} = 0.95 \le 1.0 \rightarrow \text{Nachweis i. 0}$$

8.7 Unterzug

Die Nachweise der Unterzüge sind der dritte Teil der Nachweise für die Fahrbahn. Dadurch dass die Unterzüge monolithisch mit der Fahrbahn betoniert werden, kann die gesamte Höhe des Querschnitts für den Nachweis benutzt werden h = 200 mm + 220 mm = 420 mm.

8.7.1 Nachweis: Biegung

Der Biegenachweis für die Unterzüge wird im AxisVM geführt. Die Querschnittsparameter für diese Berechnung sind:

Betonüberdeckung: $c_{nom} = 32 \text{ mm}$ Bügelbewehrung: $\emptyset_B = 14 \text{ mm}$

Mit der Zugbewehrung 2 * Ø16 = 402 mm² lautet der Nachweis für die maximale Zugbewehrung oben:

$$\frac{M_{Ed}}{M_{Rd}} = \frac{46.97}{214} = 0.22 \le 1.0 \rightarrow \text{Nachweis i. O}$$

Mit der Zugbewehrung 2 * \emptyset 30 = 1414 mm² lautet der Nachweis für die maximale Zugbewehrung unten:

$$\frac{M_{Ed}}{M_{Rd}} = \frac{153.9}{214} = 0.72 \le 1.0 \rightarrow \text{Nachweis i. O}$$

8.7.2 Nachweis: Querkraft

Die massgebende Kraft für den Nachweis der Querkraft im Unterzug ist:

$$V_{Ed} = 167.2 \text{ kN}$$
 (ULS LM1 (Innen), Temp. +)

Mit der Gleichung 43 kann somit die erforderliche Bügelbewehrung ausgerechnet werden.

$$a_{\text{sw,erf}} = \frac{V_{\text{Ed}}}{z * \cot \alpha * f_{\text{cd}}} = \frac{167.2 * 10^3}{0.1422 \text{ m} * \cot 45^\circ * 435} = 2703 \text{ mm}^2/\text{m}$$

Wahl der zweischnittigen Bügelbewehrung:

$$a_{sw} = 2 * \emptyset 14/100 \text{mm} = 2 * 1540 \frac{\text{mm}^2}{\text{m}} = 3080 \frac{\text{mm}^2}{\text{m}}$$

Mit der Bügelbewehrung a_{sw} kann der Widerstand der Querkraftbewehrung $V_{Rd,s}$ und der Widerstand des Unterzugs $V_{Rd,c}$ mit den Gleichungen 43 und 45 ermittelt werden:

$$V_{Rd,s} = a_{sw} * z * \cot \alpha * f_{sd} = 3080 * 0.1422 * \cot 45^{\circ} * 435 = 190.52 \text{ kN}$$

$$V_{Rd,c} = b_w * z * k_c * f_{cd} * \sin \alpha * \cos \alpha = 200 * 142.2 * 0.55 * 22 * \sin 45^{\circ} * \cos 45^{\circ} = 172.1 \text{ kN}$$

Für den Nachweis wird der kleinere Wert benutzt $\rightarrow V_{Rd,c}$ da $V_{Rd,s} > V_{Rd,c}$:

$$\frac{V_{Ed}}{V_{Rd,c}} = \frac{167.2}{172.1} = 0.97 \le 1.0 \rightarrow \text{Nachweis i. O}$$

9 Nachweise der Gebrauchstauglichkeit

9.1 Durchbiegungen

Für den Nachweis der Gebrauchstauglichkeit für Durchbiegungen werden gemäss SIA 260:2013 Tabelle 9 die häufigen und quasi-ständig Lastfälle untersucht. Für seltene Lastfälle ist kein Gebrauchstauglichkeitsnachweis zu erbringen. Dadurch dass die Abmessungen der äusseren Felder ähnlich sind, wird immer nur der massgebende Nachweis in diesem Kapitel erbracht.

9.1.1 Nachweis der Durchbiegungen infolge häufiger Lastfälle

Inneres Feld:

Nach SIA 260:2013 Tabelle 9 sind folgende Richtwerte für Durchbiegungen von Fuss- und Radwegbrücken infolge häufiger Lastfälle für den Grenzzustand Komfort wie folgt einzuhalten:

$$w_{\text{max}} = \frac{l}{600} = \frac{78 \text{ m}}{600} = 130 \text{ mm}$$

Die Durchbiegung aus der statischen Berechnung beträgt w = -127.5 mm (Tabelle 14). Somit beträgt der Nachweis für Durchbiegungen:

$$w = 127.5 \text{ mm} \le 130 \text{ mm} = w_{\text{max}} \rightarrow \text{Nachweis i. 0}$$

Äusseres Feld:

Nach SIA 260:2013 Tabelle 9 sind folgende Richtwerte für Durchbiegungen von Fuss- und Radwegbrücken infolge häufiger Lastfälle für den Grenzzustand Komfort wie folgt einzuhalten:

$$w_{\text{max}} = \frac{1}{600} = \frac{38 \text{ m}}{600} = 63.3 \text{ mm}$$

Die Durchbiegung aus der statischen Berechnung beträgt w = 61.7 mm (Tabelle 14). Somit beträgt der Nachweis für Durchbiegungen:

$$w = 61.7 \text{ mm} \le 63.3 \text{ mm} = w_{max} \rightarrow \text{Nachweis i. 0}$$

9.1.2 Nachweis der Durchbiegungen infolge quasi-ständiger Lastfälle

Inneres Feld:

Nach SIA 260:2013 Tabelle 9 sind folgende Richtwerte für Durchbiegungen von Fuss- und Radwegbrücken infolge häufiger Lastfälle für die Grenzzustände Komfort und Funktionstüchtigkeit wie folgt einzuhalten:

$$w_{max} = \frac{l}{700} = \frac{78 \text{ m}}{700} = 111 \text{ mm}$$

Die Durchbiegung aus der statischen Berechnung beträgt w = -65.7 mm (Tabelle 15). Somit beträgt der Nachweis für Durchbiegungen:

$$w = 65.7 \text{ mm} \le 111 \text{ mm} = w_{\text{max}} \rightarrow \text{Nachweis i. 0}$$

Äusseres Feld:

Nach SIA 260:2013 Tabelle 9 sind folgende Richtwerte für Durchbiegungen von Fuss- und Radwegbrücken infolge häufiger Lastfälle für die Grenzzustände Komfort und Funktionstüchtigkeit wie folgt einzuhalten:

$$w_{\text{max}} = \frac{1}{700} = \frac{35 \text{ m}}{700} = 50 \text{ mm}$$

Die Durchbiegung aus der statischen Berechnung beträgt w = 18.6 mm (Tabelle 15). Somit beträgt der Nachweis für Durchbiegungen:

$$w = 18.6 \text{ mm} \le 50 \text{ mm} = w_{\text{max}} \rightarrow \text{Nachweis i. 0}$$

9.2 Nachweise der Schwingungen

Für die Bestimmung der Eigenfrequenzen und den Schwingungsfrequenzen infolge nicht motorisierten Verkehrs wird im AxisVM eine Schwingungsanalyse durchgeführt. Dafür werden die verschiedenen Massenkomponenten (M_x , M_y und M_z) jeweils separat gerechnet, sodass die Ergebnisse eindeutig einer Richtung zuzuordnen sind. In der folgenden Tabelle werden die Ergebnisse aus der Schwingungsanalyse mit den Richtwerten aus der SIA 260:2013 Anhang C Tab. 10 nachgewiesen:

Tabelle 17: Nachweise der Schwingungen (Eigenfrequenzen und NMV)

rabelle 17. Nachweise der Sch	elle 17. Nachweise der Schwingungen (Eigenfrequenzen und Nivry)							
Schwingungsformen	Frequenz	Richtwerte	Nachweis					
x (längs)								
1. Form	0.29 Hz	f >1.3	Nicht erfüllt					
1. Form infolge NMV	0.25 Hz	0.25 Hz f >1.3						
y (quer)								
1. Form	0.85 Hz	f > 2.5	Nicht erfüllt					
6. Form	3.12 Hz	f > 2.5	Erfüllt					
7. Form	3.36 Hz	f > 2.5	Erfüllt					
1. Form infolge NMV	0.82 Hz	f > 2.5	Nicht erfüllt					
6. Form infolge NMV	2.76 Hz	f > 2.5	Erfüllt					
7. Form infolge NMV	2.99 Hz	f > 2.5	Erfüllt					
z (vertikal)								
4. Form	2.28 Hz	f > 4.5 oder f < 1.6	Nicht erfüllt					
7. Form	3.1 Hz	f > 4.5 oder f < 1.6	Nicht erfüllt					
3. Form infolge NMV	1.96 Hz	f > 4.5 oder f < 1.6	Nicht erfüllt					
7. Form infolge NMV	2.65 Hz	2.65 Hz f > 4.5 oder f < 1.6 Nicht er						

Nur vier von zwölf Nachweisen für Schwingungen sind erfüllt. Damit alle Schwingungen den Richtwerten der SIA 260:2013 entsprechen, müssen Schwingungstilger an der Brücke befestigt werden.

10 Brückenabmessungen

Das folgende Kapitel dient als Zusammenfassung der Bemessung und die daraus folgenden Abmessungen, Bewehrungen oder Produkte. Bauteile (wie Treppen) die bisher nicht behandelt worden sind werden in diesem Kapitel beschrieben und aufgezeigt.

10.1 Pylone

Im folgenden Kapitel werden die Pylonen vermasst und ihre Bewehrung schematisch dargestellt.

10.1.1 Nadelstiele / Stützen

Wie im Kapitel Bauverfahren erklärt, werden die Stützen aus vorfabrizierten Elementen und die Nadelstiele aus Ortbeton hergestellt. Für die Längsbewehrung werden 24 * Ø30 eingesetzt und für die Bügelbewehrung Ø14 / 100mm.

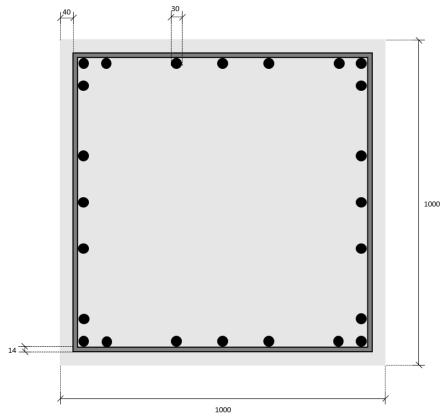


Abbildung 80: Bewehrung: Stütze

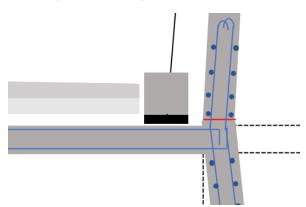


Abbildung 81: Anschluss: Querriegel an Stütze

10.1.2 Querriegel

Die Querriegel werden aus Ortbeton hergestellt. Für die Biegebewehrung werden jeweils 3 Ø30 (insgesamt 6 * Ø30) und für die Bügelbewehrung Ø14 / 100mm.

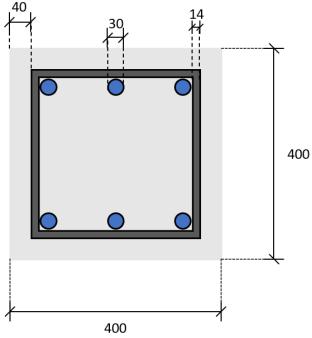


Abbildung 82: Bewehrung: Querriegel

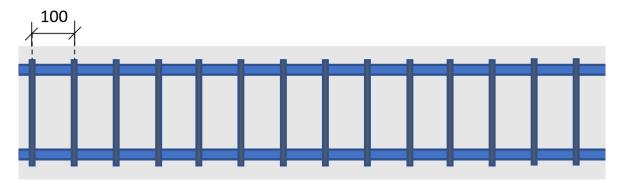


Abbildung 83: Längsansicht Bewehrung: Querriegel

10.2 Fundation

Aus der Bemessung der Fundamente ergibt sich folgende Bewehrung: Ø26 / 150mm: 1. – 4. Lage. Wobei zu beachten ist, dass die 1. Lage in Brückenlängsrichtung verläuft.

10.3 Kabelwerk

10.3.1 Schrägkabel

Für das Schrägkabel werden die Litzenkabel der Firma BBR verwendet. Dabei handelt es sich um den Typ: «BBR HiAm CONA 012 06». Aus statischer Sicht würde schon das Produkt «BBR HiAm CONA 007 06» reichen, jedoch wird bewusst das dickere Kabel gewählt sodass aufgrund der kleineren Spannungen im Kabel, die Durchbiegungen der Brücke reduziert werden.

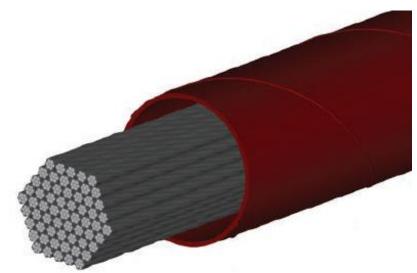


Abbildung 84: Detail: Litzenkabel

10.3.2 Verankerungsdetail: Schrägkabel – Pylon

Für die Verankerung des Schrägkabels im Pylon wird ein Gabelverankerung von der Firma BBR verwendet. Bei einer Gabelverankerung sind zwei ohrförmige Verankerungsplatten am zylindrischen Hauptkörper angefügt, indem das Schrägkabel (HiAm CONA) mit dem Gewindekopf eingeschraubt wird. Die beiden Verankerungsplatten haben jeweils ein Loch, durch welche der Bolzen durchgeführt und die Last vom Schrägkabel über eine Gabelplatte in den Überbau transferiert wird.

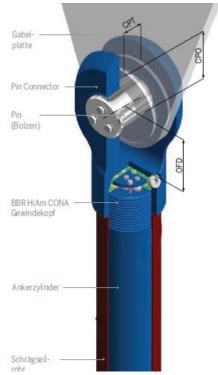


Abbildung 85: Detail: Gabelverankerung

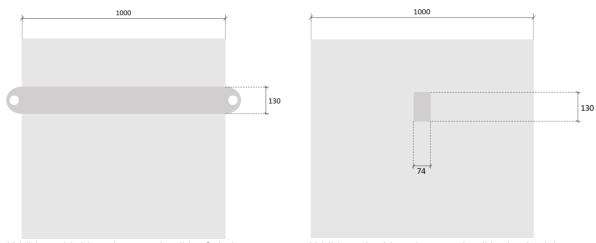
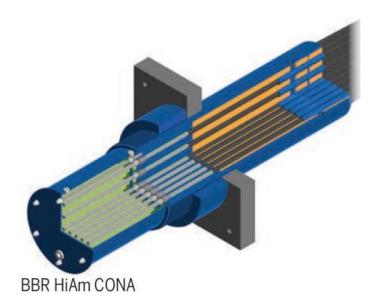



Abbildung 86: Verankerungsdetail im Schnitt

Abbildung 87: Verankerungsdetail in der Ansicht

10.3.3 Verankerungsdetail: Schrägkabel - Konsole

Für die Verankerung des Schrägkabels in der Konsole wird ein Sockel an die Konsole betoniert, sodass eine saubere Krafteinleitung ermöglicht wird. Damit sich die Last gleichmässig über die Fläche des Sockels verteilt, wird eine Druckplatte verwendet. Die Abmessungen dieses Sockels sind im Nachweis der Lasteinleitung (Anhang D) dargestellt.

Gewindekopfverankerung 120* mm Justierbarkeit Abbildung 88: BBR HiAm CONA Gewindekopfverankerung

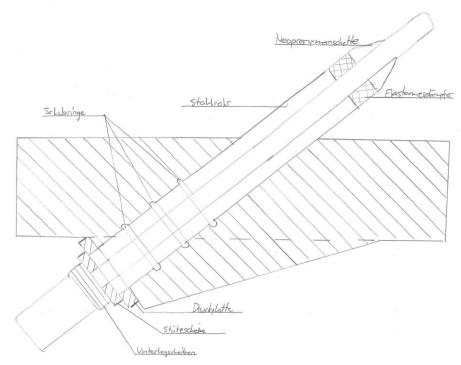


Abbildung 89: Verankerungsdetail: Schrägkabel - Konsole

10.4 Fahrbahnträger

Im folgenden Kapitel werden die Pylonen vermasst und ihre Armierung schematisch dargestellt. Die Verankerungsdetails für die Schrägkabel in der Konsole sind im Kapitel 10.3.3 ersichtlich.

10.4.1 Fahrbahnplatte

Die Fahrbahnplatte besitzt ein Quergefälle von 2 % und ein Längsgefälle von 2 %, sodass die Entwässerung über beide Seiten verläuft. Die Fahrbahnplatte wird aus Ortbeton hergestellt und die Biegebewehrung ist in der Abbildung X ersichtlich.

10.4.2 Konsole

Die Konsolen werden aus Ortbeton und monolithisch mit der Fahrbahnplatte hergestellt. Die Bügelbewehrung wird mit \emptyset 10 / 150 mm und die Biegebewehrung jeweils mit 5 \emptyset 26 oben und 3 \emptyset 26 unten angeordnet.

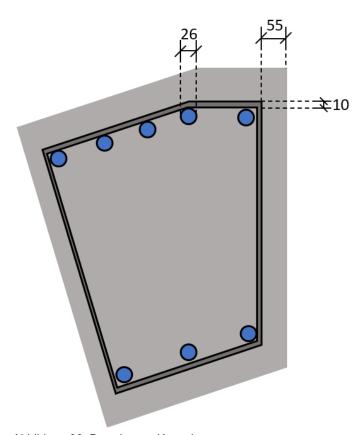


Abbildung 90: Bewehrung: Konsole

10.4.3 Unterzug

Die Unterzüge werden aus Ortbeton und monolithisch mit der Fahrbahnplatte hergestellt. Die Bügelbewehrung wird mit Ø14 / 100 mm und die Biegebewehrung jeweils mit 2 Ø16 oben und 2 Ø30 unten angeordnet.

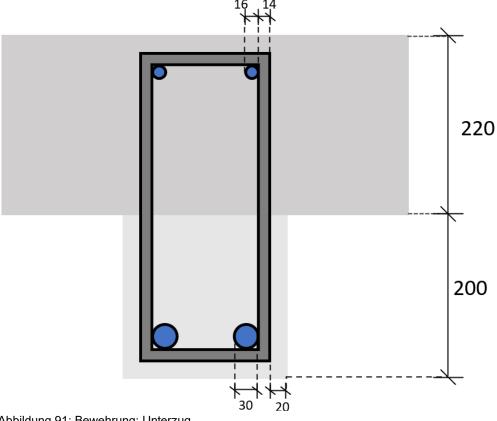


Abbildung 91: Bewehrung: Unterzug

10.5 Anbauten

Im folgenden Kapitel werden die Anbauten des Negrellistegs dargestellt. Diese Anbauten (z.B. Treppen und Lifte) spielten bisher keine zentrale Rolle in der Bearbeitung dieses Projekts. Jedoch sind sie von grosser Wichtigkeit damit eine saubere Erschliessung der Brücke möglich ist.

10.5.1 Treppen

Die Vorgaben der Brückenkonstruktion der SBB fordern, dass ab beiden Brückenenden je eine Treppe mit einer Mindestbreite von 2.40 m anzuordnen ist. Zudem gibt die SN 640 74 vor, dass die Neigung von Treppen im öffentlichen Raum aus Sicherheitsgründen den Wert 30° (58%) nicht übersteigen darf. Die Treppen werden aus Ortbeton hergestellt, sodass sie gut zur Ästhetik der Brücke passen. Die Brüstung der Brücke wird auch für die Treppe verwendet sodass aus der Sicht der Fussgänger ein fliessender Übergang zwischen Brücke und Treppe entsteht.

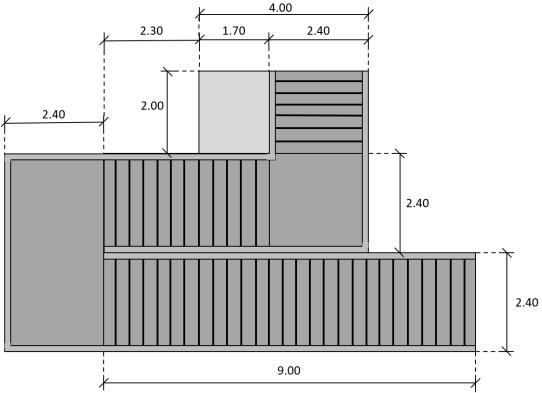


Abbildung 92: Aufsicht: Auf- und Abgänge

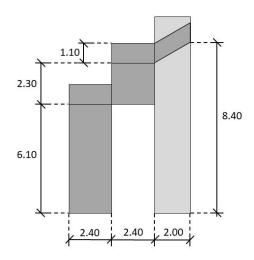


Abbildung 93: Ansicht: Auf- und Abgänge

10.5.2 Lift

Die Vorgaben der Brückenkonstruktion der SBB fordern, dass neben den Treppen auch jeweils ein Lift für zehn Personen anzuordnen ist. Die Planungsdaten für die Lifte werden aus dem «Planungsdatenblatt Schindler 3000» der Schindler AG entnommen. Für die Stufe Vorprojekt sind vor allem die Zugänge sowie Schachtabmessungen massgebend..

Kabine						Türe	n		Schacht									
													'				Dachaufbau	
	1			1												ohne	reduziert	mit
GQ kg	Per- sonen	VKN m/s	HQ m	ZE	Zugänge	BK m	TK m	m m	Тур	BT m	HT m	BS m	TS(1) m	TS(2) m	m m	HSK m	HSK m	m m
480	6	1.0	45	15	1, 2	1.00	1.30	2.00	T2	0.80	2.00	1.50	1.65	1.85	1.10	2.42	-	_
								2.10			2.00/2.10					2.52	2.90	3.40
630	8	1.0	45	15	1, 2	1.10	1.40	2.00	T2	0.90	2.00	1.60	1.75	1.95	1.10	2.42	_	_
								2.10			2.00/2.10					2.52	2.90	3.40
								2.20			2.10					-	3.00	3.50
		1.6	60	20				2.10			2.00/2.10				1.20	_	-	3.60
								2.20			2.10					_	-	3.70
800	10	1.0	45	15	1, 2	1.40	1.40	2.20	C2	0.90	2.10	2.00	1.70	1.80	1.10	-	3.10	3.80
		1.6	60	20											1.20	_	-	3.70
1000	13	1.0	45	15	1, 2	1.60	1.40	2.20	C2	0.90	2.10	2.00	1.70	1.80	1.10	-	3.00	3.50
		1.6	60	20											1.25	_	-	3.70

10.5.3 Fahrbahnübergang

Der Übergang zwischen Treppe / Lift und Brückenträger sollte keine Zwängungen infolge Verformungen in Brückenlängsrichtung erzeugen. Dafür wird zwischen Fahrbahn und Treppe / Lift eine Dehnfuge eingebaut die diese Verformungen mitmachen kann.

10.5.4 Brüstung

Die Vorgaben der Brückenkonstruktion der SBB fordern, dass Gegenstände nicht ohne weiteres auf die Fahrleitungsanlagen und das Gleisfeld geworfen werden können. Dafür muss eine feste, geschlossene Brüstung auf der Höhe von 1.10 m vorgesehen werden. Die gewählte Brüstung besteht aus ROR 33.7 Pfosten die alternierend an eine Stahlplatte geschweisst werden und in der Betonkonsole verankert werden. Damit die Brüstung geschlossen ist, wird ein Metallgewebe aus Edelstahl um die Pfosten geflochten was ihre eine leichte und textile Wirkung verleiht.

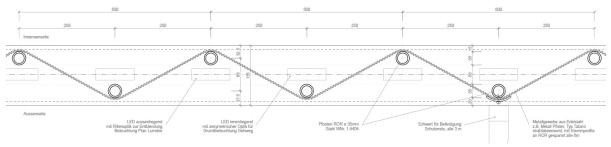


Abbildung 94: Aufsicht: Brüstung

10.5.5 Schutznetz

Die Vorgaben der Brückenkonstruktion der SBB fordern, dass wie bei der Brüstung, Gegenstände nicht ohne weiteres auf die Fahrleitungsanlagen und das Gleisfeld geworfen werden können. Dafür wird über der Brüstung ein Schutznetz bis auf 2.00 m über der Standfläche befestigt. Damit die Dauerhaftigkeit gewährleistet ist, wird ein «Jakob Webnet» aus Edelstahl (AISI 316) verwendet. Dieses besitzt eine Maschenweite von 40 mm x 75 mm und verhindert somit Vandalismus am Gleisfeld und den Fahrleitungen. Das Schutznetz wird an der Konsole befestigt

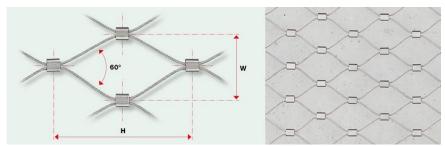


Abbildung 95: Schutznetz

10.5.6 Entwässerungsrinne

Die Entwässerungsrinne wird seitlich an der Fahrbahnplatte befestigt.

Eigenschaften:

- Edelstahl
- Kastenrinne ohne seitliche Schlitze
- Edelstahl 1.4571
- Materialstärke 4 mm
- Maschenweite 45/55 mm
- Einlaufguerschnitt: 2400 cm²
- HöhenverstellbarLänge: 1000 mmBreite: 300 mmHöhe 45 mm

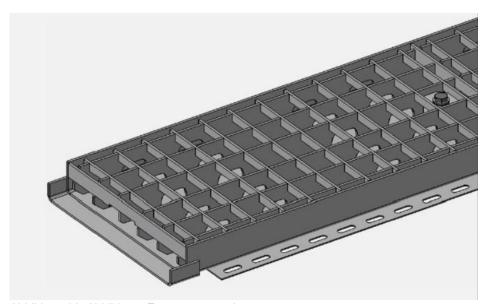


Abbildung 96: Abbildung: Entwässerungsrinne

11 Schlusswort

Zum Abschluss der Arbeit wird der Prozess reflektiert.

Die Wettbewerbsanalyse ermöglichte es in das Infrastrukturprojekt «Negrellisteg» einzutauchen. Es erlaubte die Sicht auf verschiedene Tragwerkskonzepte und ihre Vor- und Nachteile. Das Variantenstudium ermöglicht es die Entwurfsvarianten einzuordnen und diese ähnlich wie bei der Wettbewerbsanalyse ihre Vor- und Nachteile zu Nachteile zu erkennen. Das statische Modell konnte gut im AxisVM implementiert werden, jedoch haderte es mit der Nicht-linearen Analyse. Diese benötigte aufgrund von Problemen mit der Vermaschung und den Steifigkeiten viel länger als geplant war. Die Bemessung ist zum jetzigen Stand teilweise noch sehr konservativ und kann bei einer Weiterbearbeitung des Projektes noch verfeinert werden.

11.1 Ausblick

Das weitere Vorgehen besteht darin die Brücke auf folgende weiter zu bearbeiten:

- Kippen des Bauwerks während des Bauprozesses
- Nachweise weiterführen (z.B Ermüdung)
- Weitere Nachweise der Schrägkabel (Ermüdung Relaxion der Kabel, Durchhang)
- Geologisches Gutachten beantragen und in die Bemessung der Fundation einfliessen zu lassen
- Gleissperrung abklären

12 Verzeichnisse

12.1 Literaturverzeichnis

https://www.treppensicherheit.ch/normgerecht/

12.2 Tabellenverzeichnis

Tabelle 1: Materialkennwerte: Schrägkabel 1206	22
Tabelle 2: Auflagersteifigkeiten	24
Tabelle 3: Lastkombinationen: Schwingungsanalyse; Dynamische Anregung (Nicht motorisierten Verkehr)	26
Tabelle 4: Beispiel: Lastkombination	26
Tabelle 5: Massgebende Werte: Schnittgrössen in den Pylonen	30
Tabelle 6: Massgebende Werte: Auflagerreaktionen an den Knotenauflager	31
TABELLE 7: MASSGEBENDE WERTE: AUFLAGERREAKTION AM FLÄCHENAUFLAGER	31
Tabelle 8: Massgebende Werte: Schnittgrössen in den Querriegeln	33
Tabelle 9: Massgebende Werte: Normalkräfte in den Litzenkabeln	33
Tabelle 10: Massgebende Werte: Flächenbeanspruchungen in der Fahrbahnplatte	34
TABELLE 11: MASSGEBENDE WERTE: SCHUBKRAFT IN DER FAHRBAHNPLATTE	34
Tabelle 12: Massgebende Werte: Schnittgrössen in den Konsolen (1.1 und 1.2)	35
Tabelle 13: Massgebende Werte: Schnittgrössen in den Unterzügen	36
Tabelle 14: Massgebende Werte: Durchbiegung infolge häufiger Lastfälle	37
Tabelle 15: Massgebende Werte: Durchbiegung infolge quasi-ständiger Lastfälle	37
Tabelle 16: Massgebende Werte: Schwingungsanalyse (Eigenschwingungen und Dynamische Anregung)	38
Tabelle 17: Nachweise der Schwingungen (Eigenfrequenzen und NMV)	51

12.3 Abbildungsverzeichnis

Abbildung 1: Bezeichnungen: Schrägkabelbrücke	5
ABBILDUNG 2: ENTWURF 1: HOHLKASTENBRÜCKE	7
ABBILDUNG 3: ENTWURF 1: QUERSCHNITT	7
Abbildung 4: Entwurf 2: Schrägkabelbrücke	8
Abbildung 5: Brückenträger	8
Abbildung 6: Ansicht Widerlager	8
Abbildung 7: Ansicht Pylon (seitens Zollstrasse)	9
Abbildung 8: Ansicht Pylon (Seitens Gustav-Gull Platz)	9
Abbildung 9: Entwurf 3: Stabbogenbrücke	10
ABBILDUNG 10: TROG-QUERSCHNITT	10
ABBILDUNG 11: AUSSTEIFUNGEN IN BRÜCKENQUERRICHTUNG	10
Abbildung 12: Kraftfluss: Stabbogenbrücke	_
Abbildung 13: Schrägkabelbrücke als Längssystem (Quelle: G. Girmscheid – Berechnung von Schrägseilbrücken	
1987)	
Abbildung 14: Der Negrellisteg als Längssystem	11
Abbildung 15: Statisches System unter ständigen Lasten	
Abbildung 16: Statisches System unter veränderlichen Lasten	
Abbildung 17: Lageranordnung für das Lagerungskonzept: Verschieblich	
Abbildung 18: Gefederte Gleitlager als Lagerbedingung für den Horizontalen Lastabtrag	12
Abbildung 19: Brückenträger als Quersystem	
Abbildung 20: Statisches System	
Abbildung 21: Schrägkabelbrücke als Horizontalsystem (Quelle: G. Girmscheid – Berechnung von Schrägseilbrü	JCKEN
1987)	
ABBILDUNG 22: NEGRELLISTEG ALS HORIZONTALSYSTEM (WINDKRÄFTE IN ROT)	
ABBILDUNG 23: ANSICHT PYLON (SEITENS ZOLLSTRASSE; 35 M – 35 M FELD)	14
ABBILDUNG 24: ANSICHT PYLON (SEITENS GUSTAV-GULL PLATZ; 38 M – 38 M FELD)	14
ABBILDUNG 25: KABELANORDNUNG (FELD 35 M – 35 M) SEITENS ZOLLSTRASSE	
Abbildung 26: Kabelanordnung: (Feld 38 m - 38 m) seitens Gustav-Gull Platz	
Abbildung 27: Kraftfluss: Schrägkabelbrücke	
Abbildung 28: Lokaler Lastabtrag (Aufsicht)	
Abbildung 29: Ansicht Fundament: Pylon (seitens Zollstrasse)	
Abbildung 30: Aufsicht Fundament: Pylon (seitens Zollstrasse)	
ABBILDUNG 31: BAUPHASE 1	
ABBILDUNG 32: BAUPHASE 2	
ABBILDUNG 33: BAUPHASE 3	
ABBILDUNG 34: BAUPHASE 4	
ABBILDUNG 35: BAUPHASE 5	
Abbildung 36: Bauphase 6	
ABBILDUNG 37: ABMESSUNGEN UND QUERSCHNITTSWERTE: PYLONE	
ABBILDUNG 38: ABMESSUNGEN UND QUERSCHNITTSWERTE: QUERRIEGEL	
ABBILDUNG 39: MODELLIERUNG ALS DRUCKSCHLAFFER FACHWERKSTAB	
ABBILDUNG 40: ABMESSUNGEN UND QUERSCHNITTSWERTE: SCHRÄGKABEL	
ABBILDUNG 41: MODELLIERUNG: FAHRBAHNPLATTE	
ABBILDUNG 42: ABMESSUNGEN UND QUERSCHNITTSWERTE: KONSOLE	
ABBILDUNG 43: ABMESSUNGEN UND QUERSCHNITTSWERTE: UNTERZUG	
ABBILDUNG 44: LASTFALL: LM1 (VOLL)	
ABBILDUNG 45: LASTFALL: LM1 (INNEN)	
ABBILDUNG 46: LASTFALL: LM1 (AUSSEN)	
ABBILDUNG 47: KABELAUSFALL	
ABBILDUNG 48: LASTFALL: WIND (QUER)	
ABBILDUNG 49: EINSTELLUNGEN: NICHTLINEARE STATISCHE BERECHNUNG (ULS)	
ABBILDUNG 50: EINSTELLUNGEN: NICHTLINEARE STATISCHE BERECHNUNG (SLS)	
ABBILDUNG 51: UMHÜLLENDE MIN (ALLE ULS): NORMALKRAFT N _x in den Pylonen	
ABBILDUNG 52: UMHÜLLENDE MIN, MAX (ALLE ULS): QUERKRAFT V _Y IN DEN PYLONEN	
ABBILDUNG 53: UMHÜLLENDE MIN, MAX (ALLE ULS): QUERKRAFT Vz IN DEN PYLONEN	
Abbildung 54: Umhüllende Min,Max (Alle ULS): Torsion T _x in den Pylonen	29

Abbildung 55: Umhüllende Min,Max (Alle ULS): Biegemoment M₁ in den Pylonen	29
ABBILDUNG 56: UMHÜLLENDE MIN,MAX (ALLE ULS): BIEGEMOMENT M₂ IN DEN PYLONEN	30
Abbildung 57 Bezeichnungen: Knotenauflager	31
Abbildung 58: Maximale Flächenauflagerkräfte	
Abbildung 59:Umhüllende Min,Max (Alle ULS): Normalkraft N _x in den Querriegeln	32
ABBILDUNG 60: UMHÜLLENDE MIN, MAX (ALLE ULS): BIEGEMOMENT M _Y IN DEN QUERRIEGELN	32
ABBILDUNG 61:UMHÜLLENDE MIN, MAX (ALLE ULS): QUERKRAFT V_z IN DEN QUERRIEGELN	32
Abbildung 62: Umhüllende Max (Alle ULS): Normalkraft N _x in den Litzenkabeln	
ABBILDUNG 63: UMHÜLLENDE MIN, MAX (ALLE ULS): SPEZIFISCHES BIEGEMOMENT UM LOKALE Y-RICHTUNG Mx	34
ABBILDUNG 64: UMHÜLLENDE MIN, MAX (ALLE ULS): SPEZIFISCHES BIEGEMOMENT UM LOKALE X-RICHTUNG MY	34
ABBILDUNG 65: UMHÜLLENDE MIN, MAX (ALLE ULS): SPEZIFISCHES TORSIONSMOMENT MXY	34
Abbildung 66: Umhüllende Min, Max (Alle ULS): Resultierende Spezifische Schubkraft vrz	34
Abbildung 67: Bezeichnungen: Konsole	35
ABBILDUNG 68: UMHÜLLENDE MIN, MAX (ALLE ULS): NORMALKRAFT N _x in der Konsole 1.2	35
ABBILDUNG 69: UMHÜLLENDE MIN, MAX (ALLE ULS): BIEGEMOMENTE M _Y IN DER KONSOLE 1.2	
ABBILDUNG 70: UMHÜLLENDE MIN, MAX (ALLE ULS): QUERKRAFT V_z in der Konsole 1.2	35
ABBILDUNG 71: UMHÜLLENDE MIN, MAX (ALLE ULS): NORMALKRAFT N _x IM UNTERZUG 32	36
ABBILDUNG 72: UMHÜLLENDE MIN,MAX (ALLE ULS): BIEGEMOMENT M₁IM UNTERZUG 32	36
ABBILDUNG 73: UMHÜLLENDE MIN,MAX (ALLE ULS): QUERKRAFT V₂ IM UNTERZUG 32	36
ABBILDUNG 74: UMHÜLLENDE MIN: SLS HÄUFIGE	37
Abbildung 75: Umhüllende Max: SLS Häufige	37
Abbildung 76: Umhüllende Min: SLS Quasi-Ständig	37
Abbildung 77: Umhüllende Max: SLS Quasi-Ständig	
Abbildung 78: M-N-Interaktion (oben)	40
Abbildung 79: M-N-Interaktion (unten)	41
Abbildung 80: Bewehrung: Stütze	
ABBILDUNG 81: ANSCHLUSS: QUERRIEGEL AN STÜTZE	52
ABBILDUNG 82: BEWEHRUNG: QUERRIEGEL	
Abbildung 83: Längsansicht Bewehrung: Querriegel	
Abbildung 84: Detail: Litzenkabel	
Abbildung 85: Detail: Gabelverankerung	
Abbildung 86: Verankerungsdetail im Schnitt	
Abbildung 87: Verankerungsdetail in der Ansicht	
ABBILDUNG 88: BBR HIAM CONA GEWINDEKOPFVERANKERUNG	
Abbildung 89: Verankerungsdetail: Schrägkabel – Konsole	
Abbildung 90: Bewehrung: Konsole	
ABBILDUNG 91: BEWEHRUNG: UNTERZUG	
ABBILDUNG 92: AUFSICHT: AUF- UND ABGÄNGE	
ABBILDUNG 93: ANSICHT: AUF- UND ABGÄNGE	
ABBILDUNG 94: AUFSICHT: BRÜSTUNG	
ABBILDUNG 95: SCHUTZNETZ	
ARRIUDLING 96: ARRIUDLING: FNTWÄSSERLINGSRINNE	ລາ

13 Anhang

Siehe Anhang D

Negrellisteg – Zürich

Wettbewerbsanalyse und Entwurf

Anhang

Bachelor-Thesis HS22

Hochschule Luzern Technik und Architektur

Horw, 03. Januar 2023

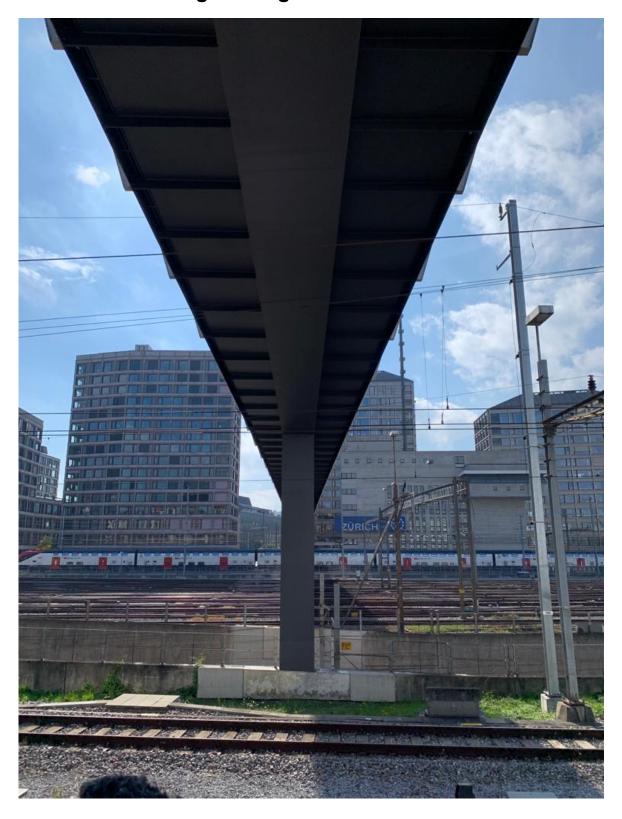
Autor:
Shpat Beqiri
Eichenstrasse 17
6015 Luzern

Dozent:

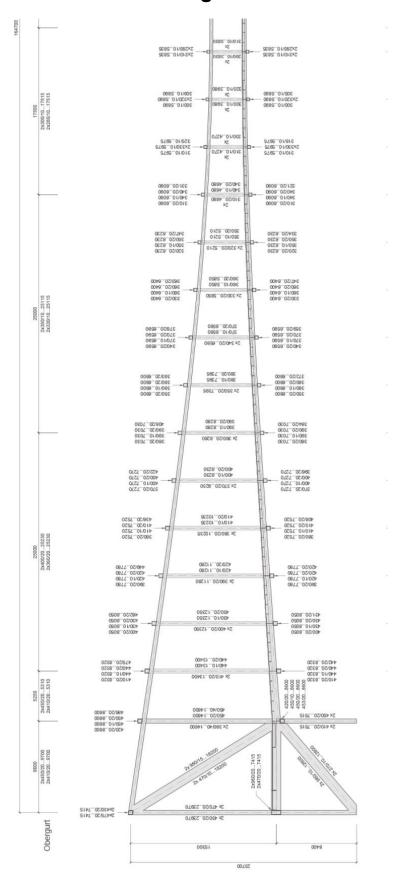
Dr. Stephan Gollob

Experte:

Dr. Axel Volkwein


Inhalt

Anhang A – Wettbewerbsanalyse	4
1 Stahlschuh: Negrellisteg	5
2 Bauteilabmessungen: Wurmloch	6
3 UHFB – Preis	7
Anhang B – Nutzungsvereinbarung	8
Anhang C – Projektbasis	9
4 Abmessungen: Bauteile	10
4.1 Pylon	10
4.2 Schrägkabel	11
4.3 Konsole	11
4.4 Unterzug	12
5 Produkte	13
5.1 Schrägkabel und Verankerung	13
6 Lastermittlung	14
6.1 Ständige Einwirkungen	14
6.1.1 Vorspannung Schrägkabel	14
6.2 Veränderliche Einwirkungen	17
6.3 Aussergewöhnliche Einwirkungen	19
6.3.1 Anprall	19
6.3.2 Erdbeben	21
7 Baugrundkennwerte	22
Anhang D – Technischer Bericht	23
8 Variantenstudium	24
8.1 Schrägkabelbrücke	24
8.2 Stabbogenbrücke / Netzwerkbrücke	26
8.3 Hohlkastenbrücke	28
9 Modellierung	30
9.1 Laststellungen	30
9.1.1 Eigengewicht	30
9.1.2 Auflasten	30
9.1.3 Vorspannung	30
9.1.4 Nicht motorisierter Verkehr	31
9.1.5 Wind	33
9.1.6 Temperatur	33
9.1.7 Anprall	34
9.1.8 Erdbeben	35
10 Nachweise	36
10.1 Pylone	36


10.1.1	Nachweis: Knicken (oben)	36
10.1.2	Nachweis: Knicken (unten)	37
10.1.3	Nachweis: Querkraft	39
10.1.4	Nachweis: Lasteinleitung Schrägkabel – Pylon	40
10.1.5	Nachweis: Verankerung Schrägkabel – Pylon	41
10.2 Qu	erriegel	42
10.2.1	Nachweis: Biegung (Zug oben)	42
10.2.2	Nachweis: Biegung (Zug unten)	43
10.2.3	Nachweis: Querkraft	44
10.3 Fu	ndation	45
10.3.1	Nachweis: Tragfähigkeitsprobleme	45
10.4 Scl	hrägkabel	46
10.4.1	Nachweis: Tragvermögen	46
10.5 Fal	hrbahn	47
10.5.1	Mindestbewehrung	47
10.5.2	Nachweis: Biegung	48
10.5.3	Nachweis Querkraft:	49
10.6 Ko	nsole	50
10.6.1	Nachweis: Biegung	50
10.6.2	Nachweis: Querkraft	51
10.6.3	Nachweis: Lasteinleitung Schrägkabel – Konsole	52
10.6.4	Nachweis: Abscheren: Fahrbahnplatte – Konsole	53
10.7 Un	terzug	54
10.7.1	Nachweis: Biegung (Zug oben)	54
10.7.2	Nachweis: Biegung (Zug unten)	55
10.7.3	Nachweis: Querkraft	56
10.8 Du	rchbiegungen	57

Anhang A – Wettbewerbsanalyse

1 Stahlschuh: Negrellisteg

2 Bauteilabmessungen: Wurmloch

3 UHFB - Preis

Oliver Imesch <oliver.imesch@holcim.com> An: Beqiri Shpat TA.B.1801

Guten Tag Herr Beqiri

Das ist natürlich ein sehr grosses Volumen und es stellt sich die Frage, ob UHFB hierfür das richtige Material ist, Preis/Leistung...

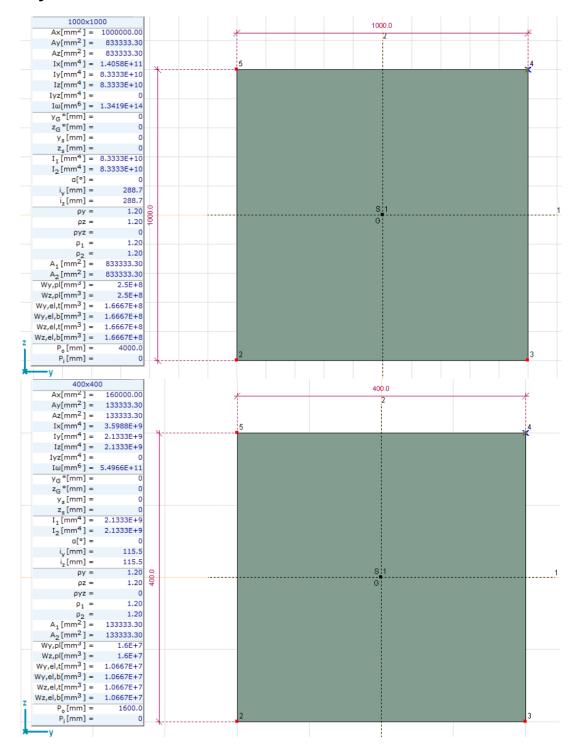
Der Kubikmeterpreis bewegt sich für so grosse Volumen bei circa 2'000 bis 2'500 CHF. Im 2017 waren es etwa 10 Prozent weniger.

Ich hoffe, ich kann Ihnen weiterhelfen und alles Gute für Ihre Bachelor-Thesis.

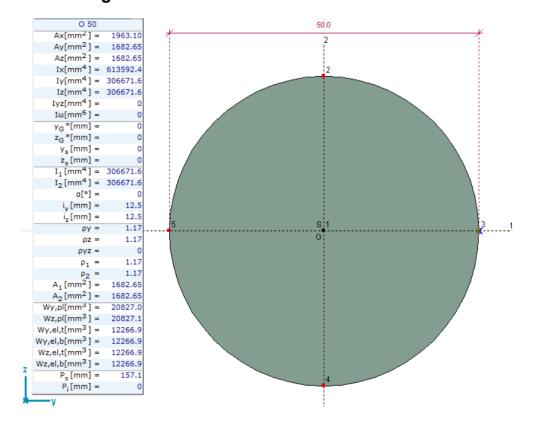
Freundliche Grüsse

www.holcim.ch

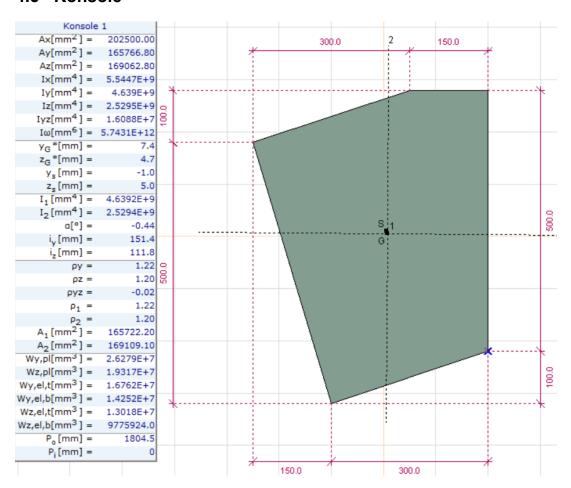
Oliver Imesch
Business Developer & Sales Manager Ductal Airium
Holcim (Schweiz) AG
Hagenholzstrasse 83
8050 Zürich / Schweiz
Phone: +41 (0)79 889 28 59
Fax: +41 (0)58 850 65 08
oliver.imesch@holcim.com

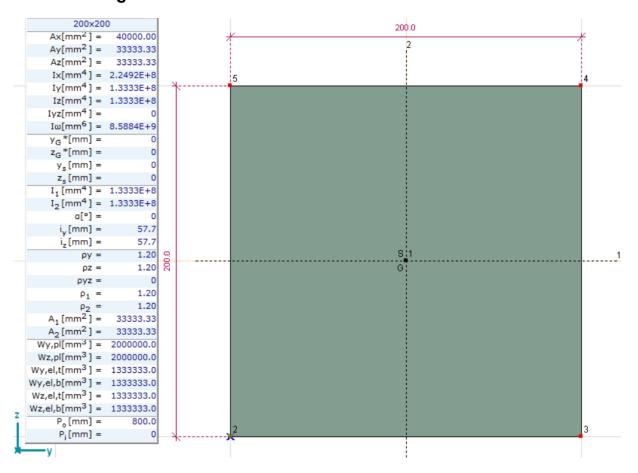

Anhang B – Nutzungsvereinbarung

-


Anhang C – Projektbasis

4 Abmessungen: Bauteile


4.1 Pylon


4.2 Schrägkabel

4.3 Konsole

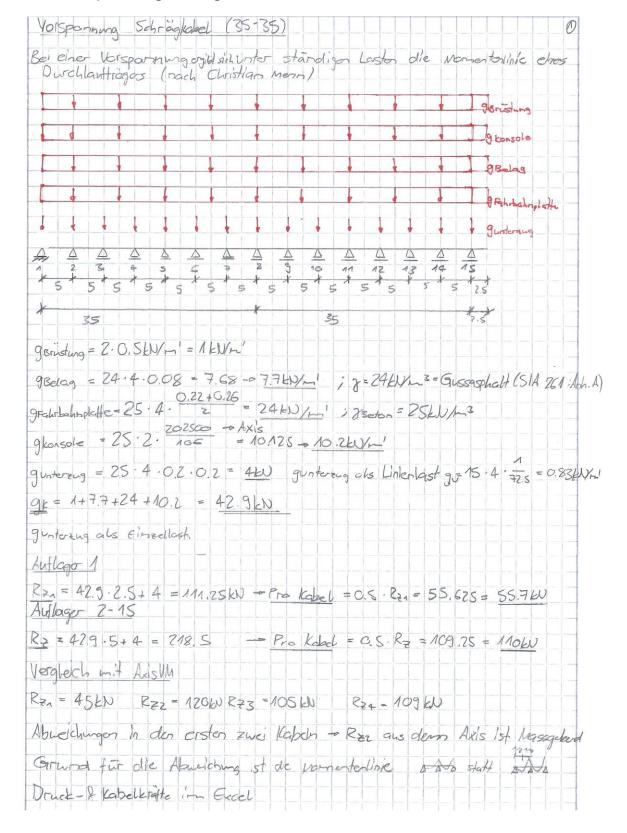
4.4 Unterzug

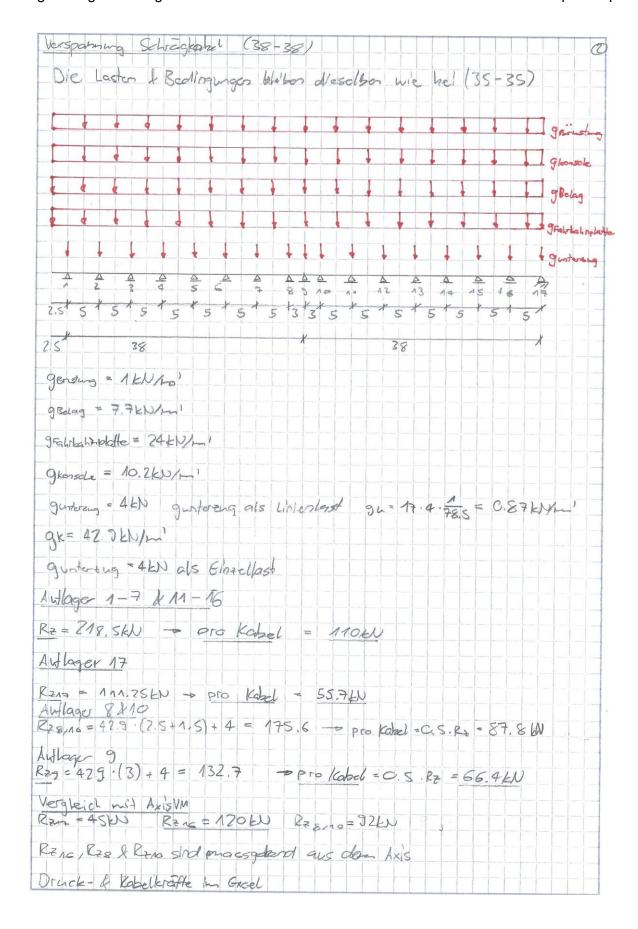
5 Produkte

5.1 Schrägkabel und Verankerung

Tabelle 1. BBR HiAm CONA Technische Daten

BBR HiAm CONA	Тур			00106	002 06	003 06	00406	007 06	012 06	013 06
	Anzahl der Litzen ¹	n		1	2	3	4	7	12	13
	Bruchlast ²		[kN]	279	558	837	1,116	1,953	3,348	3,627
Standard-	Standarddurchmesser	SPD	[mm]	-	50	63	63	90	110	110
Schrägseilrohr	Wandstärke	SPT	[mm]	-	5.0	5.0	5.0	5.0	5.0	5.0
Kompaktes	Standarddurchmesser	SPD	[mm]	-	50.0	50.0	63.0	90.0	90.0	110.0
Schrägseilrohr	Wandstärke	SPT	[mm]	-	5.0	5.0	5.0	5.0	5.0	5.0
Gewindekopf- und	Höhe	ANH	[mm]	45	55	55	65	65	75	75
Standard-Kopfver-	Durchmesser	AND	[mm]	80	115	140	155	180	215	230
ankerung Uni Head ³	Länge	SKL	[mm]	485	535	585	685	735	735	735
Kopfverankerung mit	Höhe	ANH	[mm]	100	100	100	100	105	105	105
kurzem Ankerzylin- der Short Socket Uni	Durchmesser	AND	[mm]	78	115	127	135	166	200	217
Head	Länge	SKL	[mm]	225	225	225	225	225	225	225
Geführter Deviator ⁴	Abstand vom Ankerzylinder	GDL	[mm]	240	240	275	335	475	720	820
Freier Deviator 4	Abstand vom Ankerzylinder	DVL	[mm]	-	270	310	380	535	820	930
Schwingungsdämpfer 4,10	Abstand vom Ankerzylinder	SDL	[mm]	1,285	1,465	1,495	1,555	1,685	1,890	1,930
	Standard	OPD	[mm]	68	98	121	133	148	183	198
Öffnung	Kurzer Ankerzylinder	OPD	[mm]	63	97	103	109	129	168	180
	Kompakt ⁵	OPD	[mm]	63	91	102	110	130	165	178
Gewicht	Schrägseil	m _s	[kg/m]	1.3	3.4	4.7	6.0	10.3	17.1	18.4


Tabelle 2. BBR HiAm CONA Gabelverankerung Technische Daten


BBR HiAm CONA	Тур			002 06	003 06	004 06	00706	012 06	013 06
Cabalyarankarung	Anzahl Litzen	n		2	3	4	7	12	13
Gabelverankerung	Bruchlast		[kN]	558	837	1,116	1,953	3,348	3,627
	Öffnung Durchmesser	СРО	[mm]	55	66	74	94	121	124
Verankerung ¹	Dicke	CPT	[mm]	30	37	43	57	74	77
	Abstand Vorderseite	OFD	[mm]	112	131	147	186	238	244

6 Lastermittlung

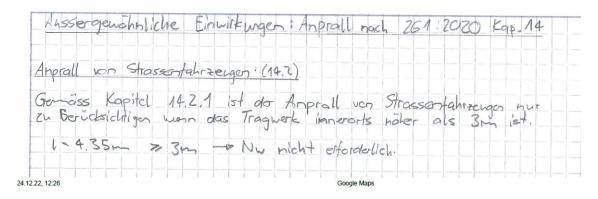
6.1 Ständige Einwirkungen

6.1.1 Vorspannung Schrägkabel

Vorspannung Feld (35 - 35)								
Nummeri	Nummerierung von Aussen nach Innen							
Höhe	Länge		Alpha	Rz	Rx	Rkabel	Rkabel gerundet	
(m)	(m)	Alpha (in Rad)	(°)	(kN)	(kN)	(kN)	(kN)	
15.8	35	0.42	24.30	57	126.27	138.54	139.00	
14.8	30	0.46	26.26	120	243.24	271.23	272.00	
13.8	25	0.50	28.90	110	199.28	227.62	228.00	
12.8	20	0.57	32.62	110	171.88	204.06	205.00	
11.8	15	0.67	38.19	110	139.83	177.91	178.00	
10.8	10	0.82	47.20	110	101.85	149.91	150.00	
9.8	5	1.10	62.97	110	56.12	123.49	124.00	
-	1	-	-	ı	ı	ı	-	
9.8	5	1.10	62.97	110	56.12	123.49	124.00	
10.8	10	0.82	47.20	110	101.85	149.91	150.00	
11.8	15	0.67	38.19	110	139.83	177.91	178.00	
12.8	20	0.57	32.62	110	171.88	204.06	205.00	
13.8	25	0.50	28.90	110	199.28	227.62	228.00	
14.8	30	0.46	26.26	110	222.97	248.63	249.00	
15.8	35	0.42	24.30	110	243.67	267.35	268.00	

Vorspann	Vorspannung Feld (38 - 38)							
Nummeri	Nummerierung von Innen nach Aussen							
Höhe	Länge	Alpha (in	Alpha	Rz	Rx	Rkabel	Rkabel gerundet	
(m)	(m)	Rad)	(°)	(kN)	(kN)	(kN)	(kN)	
17.2	38	0.43	24.35	110	243.02	266.76	267.00	
16.2	33	0.46	26.15	110	224.07	249.62	250.00	
15.2	28	0.50	28.50	110	202.63	230.56	231.00	
14.2	23	0.55	31.69	110	178.17	209.39	210.00	
13.2	18	0.63	36.25	110	150.00	186.01	187.00	
12.2	13	0.75	43.18	110	117.21	160.74	161.00	
11.2	8	0.95	54.46	110	78.57	135.18	136.00	
10.2	3	1.28	73.61	92	27.06	95.90	96.00	
-	-	-	-	-	-	-	-	
10.2	3	1.28	73.61	92	27.06	95.90	96.00	
11.2	8	0.95	54.46	110	78.57	135.18	136.00	
12.2	13	0.75	43.18	110	117.21	160.74	161.00	
13.2	18	0.63	36.25	110	150.00	186.01	187.00	
14.2	23	0.55	31.69	110	178.17	209.39	210.00	
15.2	28	0.50	28.50	110	202.63	230.56	231.00	
16.2	33	0.46	26.15	120	244.44	272.31	273.00	
17.2	38	0.43	24.35	56	123.72	135.80	136.00	

6.2 Veränderliche Einwirkungen

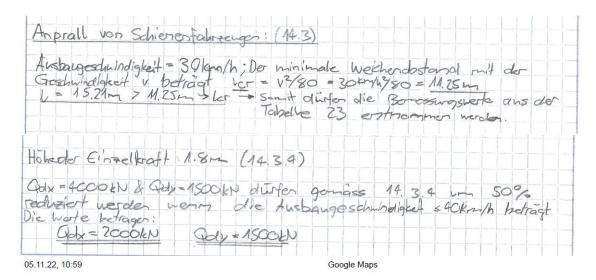

Veranderliche	Einwirkung: V	Jind	nach	5/4	261:20	20 Kap.	6	1
Standruck o	P:							
gp = Ch.	Po l	(11						
9po=0,9 EN/m Ch=1.6. [2								
Geländekoke								
2g = 380 m		19						
Brückenhähe & Profilbeivert c								
$Ch = 1.6 \cdot \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}$		= 1.6	[(380)	+0	375]	= 1.23		
9p= Cn . 9po=	= 0.9 · 1.23 =	= 1.11	KNI	=				
Botimmung Wire	lkrafte							
Qk = Gred · Col	· Cf · 9p · Aref				Creo	1=1.0	(63.	2)
Pylone: Ca = 1.0 wen.	m. &	> 1.9	(51)	- 261/	4:2026	Keip. 10.	2,2)	
m = 2500 kg	1 m2 = 2500 kg				15 gen	=55 S		202G
$\rho = 1.2 \text{kg/m}^3$					Stah	lbeton bri	icken	
m·\$ 2500. P·ail = 1.2.	0.015 = 31.	.25 >	1.9 -	o ce	1=1.0			
Cf # Tab. 606								
mil 4=0°	petraigh of =	1.25						
QK = tred 'Ca'	G. Qp. Aref = 1	1.0.1.0	1.25	1.11.	1 = 1.	3875 = ,	1.4kN/n	

Veranderliche Einwirkung: wind nach SIA 261:2020 Kap. & Aartsetzung	2
Botimming windkrafte	
QK = Cred · Cd · Cf · qp · Aref Cred = 1.0 (6.3.2)	
Falitbahr	
Cd = 1.0 upn p.d2 > 1.9 (SIA 261/1:2020 10.2.2)	
m 7 Ans der Vorspanningsberechung = 42 3 kN/m = 4250kg/m	
\$ = 0.015 germass 5/A 261/1:2020 Tabelle 18 für gerissene Stallbekerbrück	
P=1.2kg/m3; d=0.3m + Konservativer Ansotz	
$m.5 = 4296.0.015$ $p.d^2 = 1.2.0.37 = 595.8 > 1.9 = 0d = 1.0$	
cf -> Tabelle 61 SIA 261:2026	
h (c.28+0.2) b = 4 = 0.12	
hn 1.1 6 = 4 = 0.275 mil & = 0 bdreigt cf1 = 0.91 cf2 = -0.91 ~ Vernace	chlossi gbar
Qx = creal col of ap Aref = 1.0.1.0.0.91.1.11. (1.1+0.28+0.2)=1.5	596 kWn 6 kWn

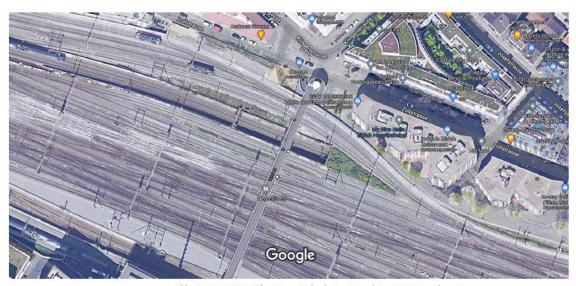
6.3 Aussergewöhnliche Einwirkungen

6.3.1 Anprall

Anprall von Strassenfahrzeugen:



Google Maps



Entfernung messen Entfernung gesamt: 4,35 m (14,28 ft)

Anprall von Schienenfahrzeugen:

Google Maps

Bilder © 2022 CNES / Airbus,Maxar Technologies,Kartendaten © 2022 Google 20 m L

Entfernung messen

Entfernung gesamt: 15,21 m (49,89 ft)

6.3.2 Erdbeben

	Ausgogenohaliche Einwirkungen Erdheben mit dem Erschekrofherfelben mach 51A 261 2020 16.5.2
	Steffkeit der Brücke: Kratt
	Stelfiglet = Vetfeting
	Kranflensalz: Fx = 1000kN; Fy = 1000kN in Brickenitte
	Verformages aus Fx - ex = 415 mm
	Fy +> ey = 68 mm
	Steifigker x = 0.415 = 2409 (415)/m
	Stof gleeily = 0.068 = 14/705.9 W/H
	Masse des Brickentragers (aus der Vorspamnungsberechnung):
Trago	(ge+9m+9m2)-L=(42.9+ 2)-151m=6606.25kN (Aus Vorspannugsheed)
Pylen	8. 1m2.25 kN/m3. (1/12+8.42)+2.1m2.25 16.35m+2.1m2.25.17.72+4.042.54.25=361.76 W
Kebel	27 6.7 EN (ALG Axis) M=6606.25+3481.76+276.7 = 10'364.7 W T = f f = 27 Vn
	1 = f = 277 Vm
	$\frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$
	$f_y = \frac{1}{2\pi} \sqrt{\frac{ky}{m}} = \frac{1}{2\pi} \sqrt{\frac{14705.9}{10'364.7}} = 0.19$ He $-\frac{1}{1}y = \frac{1}{7}y = 0.13 = 5.27 s$
	TO STx = Gleichung 34 Jf=1.2 da Umaeltschaden möglich std.
	To STx = Gleichung 34 Jf=1.2 da Urmaeltschaden möglich std. Sdx=2.5.14.9 9.5.72.9 > 0.1.7f.9
	$= 2.5 \cdot 1.2 \cdot \frac{0.6}{10} \cdot 1.2 \cdot \frac{0.35 \cdot 2.0}{13.8^2 \cdot 2} \ge 0.1 \cdot 1.2 \cdot \frac{0.6}{10}$
	0.000446 > 0.00073
	To & Ty - & Gleichung 34
	To & Ty - Gleiching 34 L - Sdx = 0.0072 Sdy = 2.5 gf. g · S. Ty2 a > 0.1 · y4 · g = 2.5 · 1/2 · 1/0 · 1/2 · 5.272 · 2 > 0.1 · 1/2 · 1/0 C 0.002722 > 0.0072
	= 25.12.40 11.2.573-27 20.1.12.
	COO02722 > O.0072
	3ay - 0.00 + C
	Fdx = Fdy = 5d·m = 0.0072. 18364.7KN = 74.6259 - 74.7KN

7 Baugrundkennwerte

Objekt-Information

Geologische Vektordatensitze GeoCover (Bundesamt für Landestopografie swisstapp)

Ernheit Shat dr. Limbelgerin)

Tettorschie Ernheit Sink Schotter
Lim Strati dr. Limbelgerin)

Tettorschie Ernheit Spiles Pleatoular- Helozin
Organele Bezeichnung
Organele Bezeichnung
Organele Bezeichnung
Organele Bezeichnung
Limk (https://dista.gov.a.pdm.org/10/25-ERIL-50 org)

Alktualtsierungsbericht - Bezeichnung Secologischer aftasierfeseuten unsern (3/25-ERIL-50 org)

Erweiterung Spital + Reha Uster, Brunnenstrasse 42, Uster / ZH Geologisch-geotechnischer Bericht

7. Oktober 2016

Tabelle 2: Baugrundwerte für ungestörte Verhältnisse (geschätzte Mittelwerte Xm, in Klammer Extremwerte Xextr)

Bodenbeschreibung	Raumlast	Kohäsion	Reibungs- winkel	Zusammendrückungsmodul	
				Erstbelastung	Wiederbelast.
	γ	c'	φ'	ME	Me'
	[kN/m³]	[kN/m²]	[°]	[MN/m²]	[MN/m²]
künstliche Auffüllungen / Oberflächenschichten					
– Kieskoffer	20	0	(32) 35	(30) 40	120
– si l tig-sandig	19	0	(24) 26	_	_
– tonig-siltig	19	(1) 2	(22) 24	_	-
Schotter					
– si l tig-sandiger Kies	20.5	0	(34) 36	(40) 50	150
Moräne – tonig-siltiger, sandiger Kies					
mit Steinen und Blöcken	22	(5) 10	(31) 33	(50) 70	210
Seeablagerungen					
 leicht toniger Silt und Sand 	22	(1) 3	(30) 32	(50) 70	210

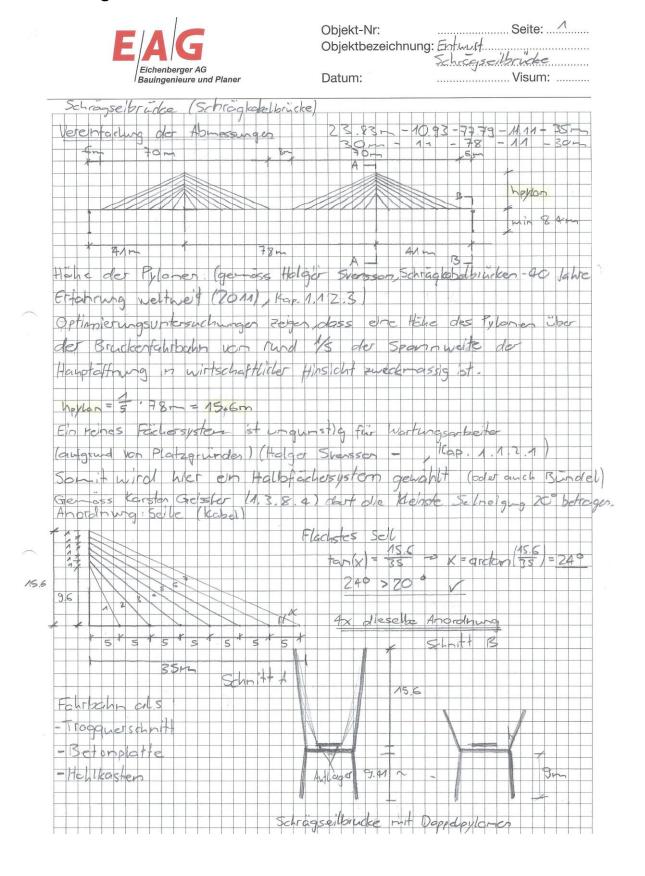
Umrechnung Einheiten:

 $1 \; kN/m^3 = 0.1 \; t/m^3 \qquad 1 \; kN/m^2 = 0.1 \; t/m^2 = 0.01 \; kg/cm^2 \qquad 1 \; MN/m^2 = 100 \; t/m^2 = 10 \; kg/cm^2$

Für die Bestimmung der charakteristischen Werte Xk kann folgende Formel verwendet werden:

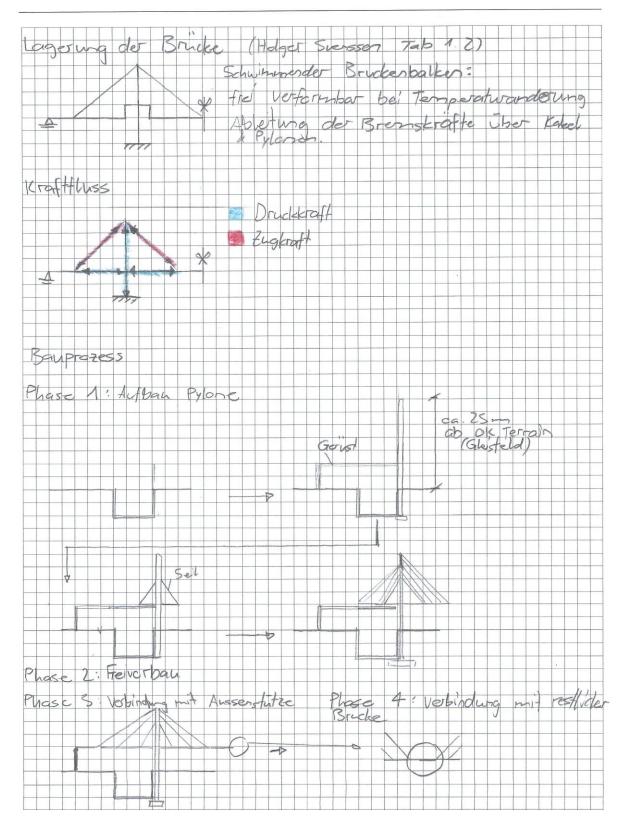
 $Xk = Xm - \alpha (Xm - Xextr)$

Faktor für Zuverlässigkeit α :

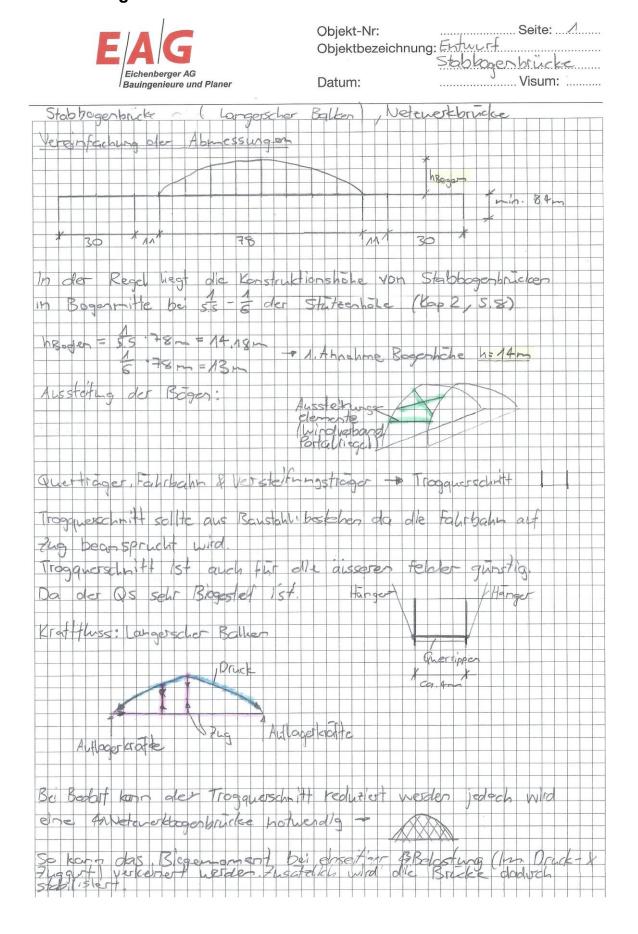

 α = 0.40 für Kohäsion c' (berechneter Wert ist auf die ganze Zahl abzurunden)

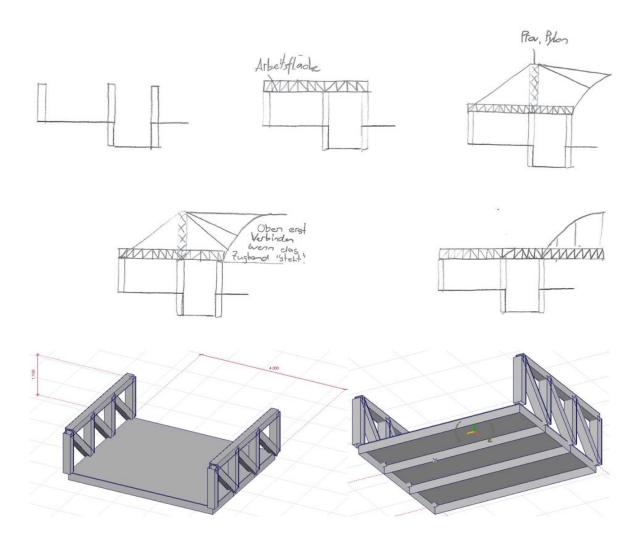
 α = 0.20 für übrige Parameter

Anhang D – Technischer Bericht

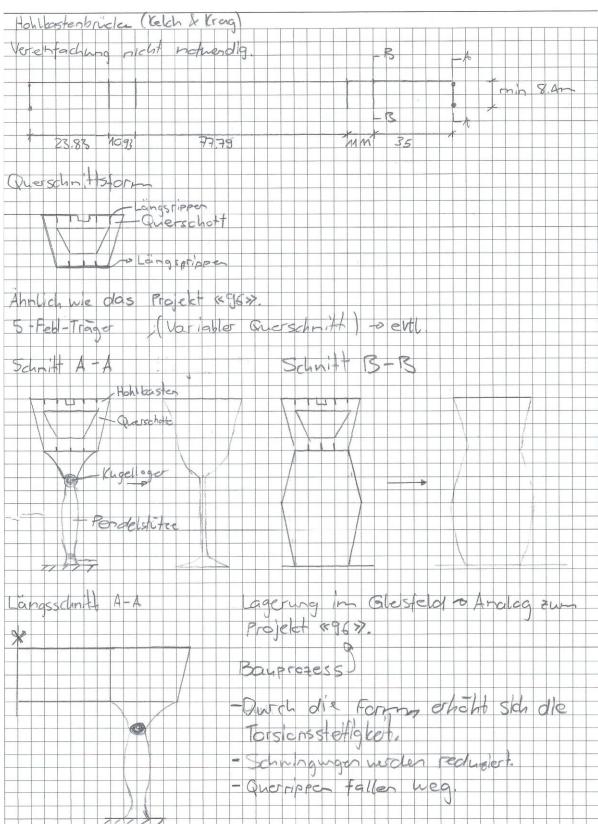

8 Variantenstudium

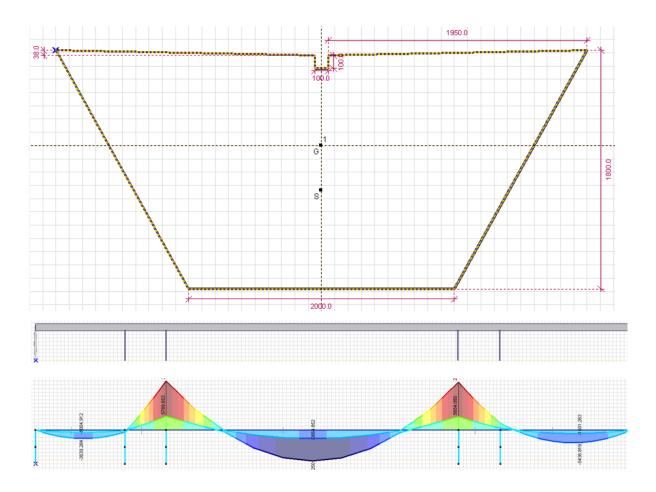
8.1 Schrägkabelbrücke





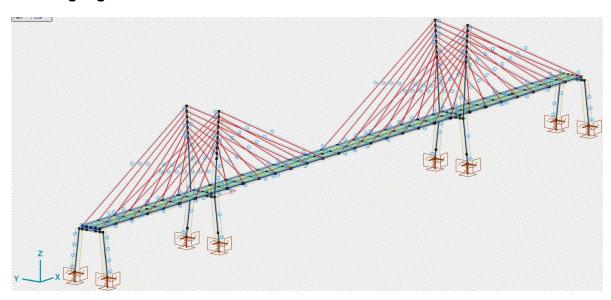
Objekt-Nr:	Seite:
Objektbezeichnung:	Enturit Schragselbrücke
	Schragselbrucke
Datum:	Visum:

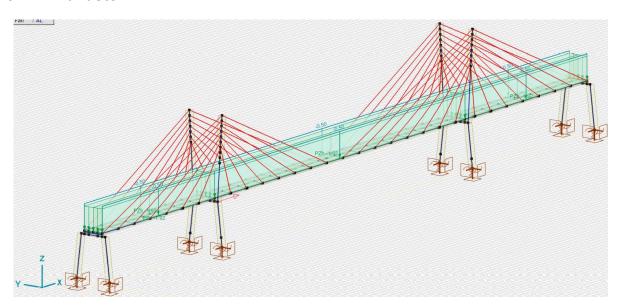

8.2 Stabbogenbrücke / Netzwerkbrücke



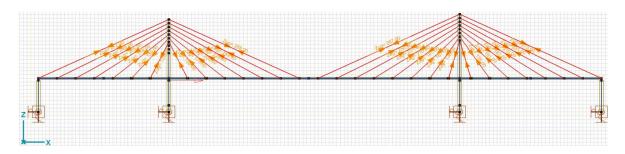
8.3 Hohlkastenbrücke

EAG Eichenberger AG Bauingenieure und Planer	Objekt-Nr: Objektbezeichnung:	Seite: Enturf Hohlkastenbr <i>icke</i>
	Datum:	Visum:

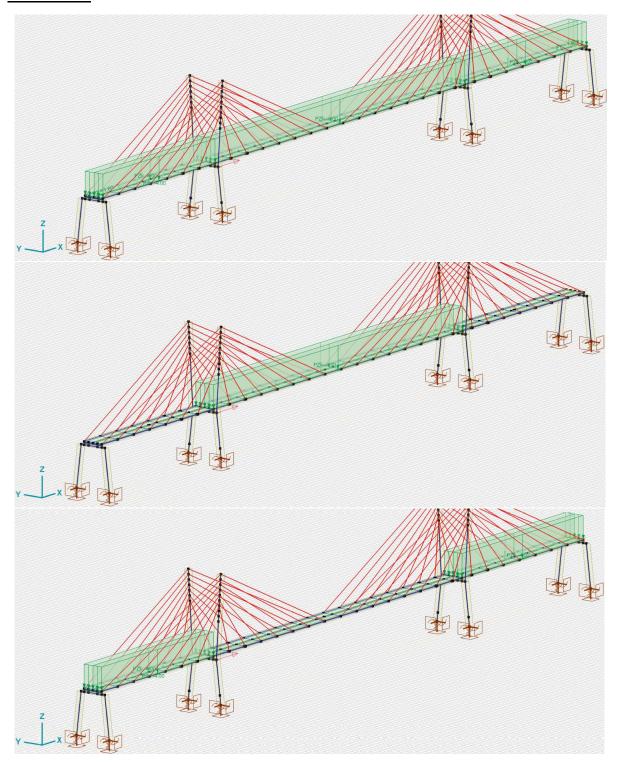



9 Modellierung

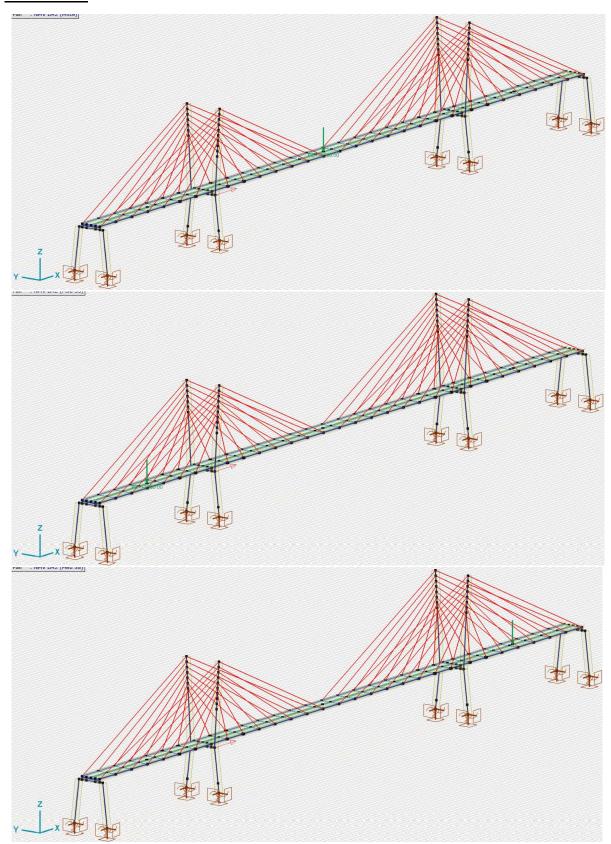
9.1 Laststellungen


9.1.1 Eigengewicht

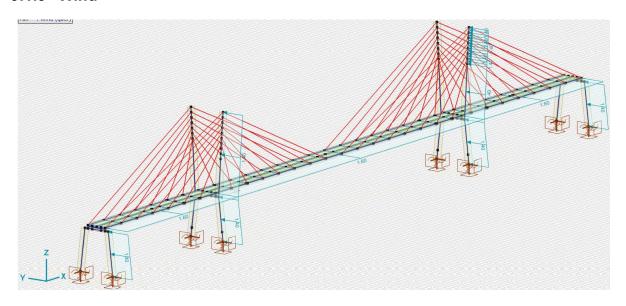
9.1.2 Auflasten

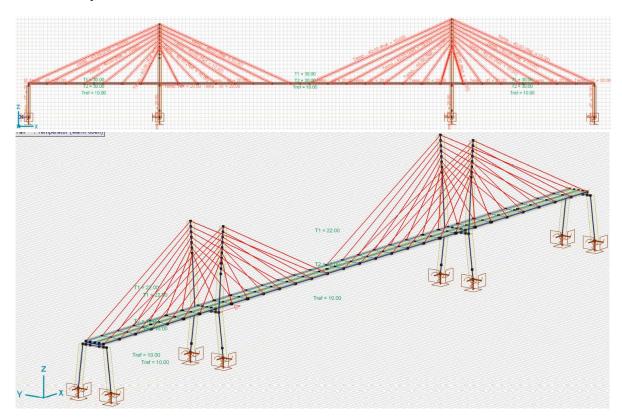


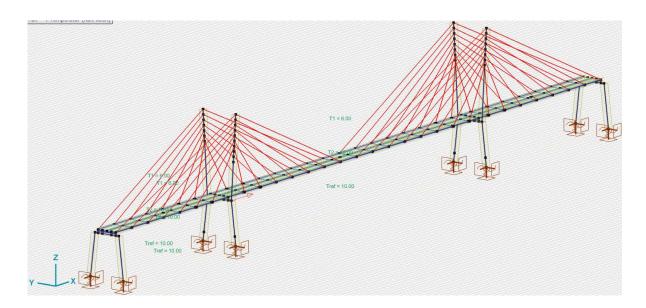
9.1.3 Vorspannung



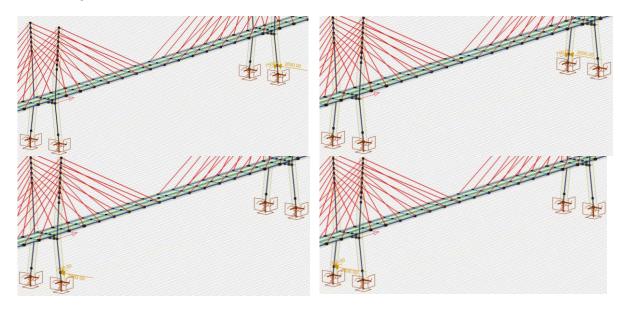
9.1.4 Nicht motorisierter Verkehr


Lastmodell 1

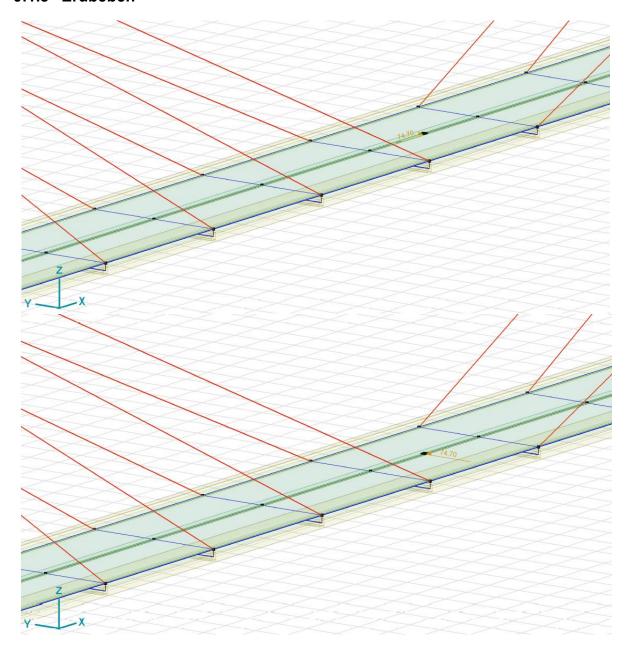

Lastmodell 2



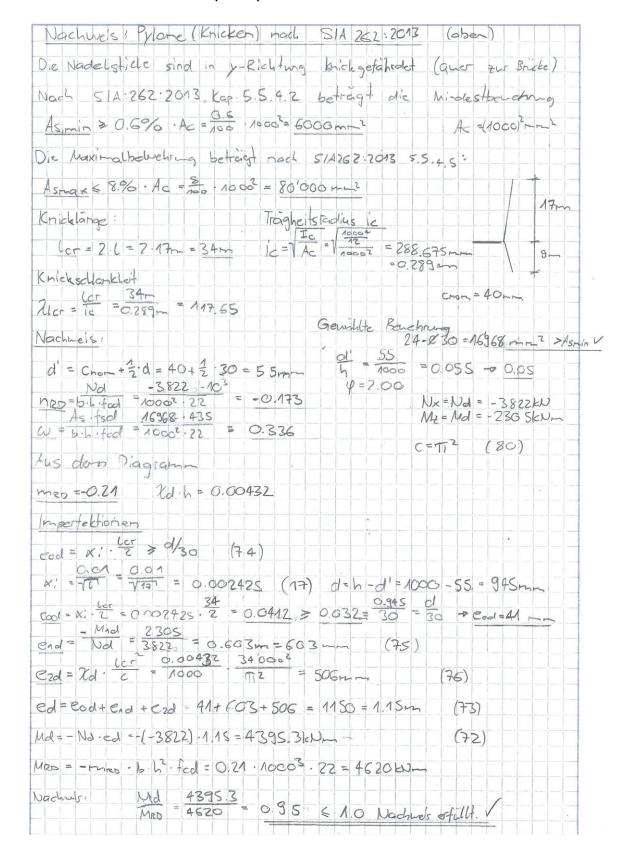
9.1.5 Wind



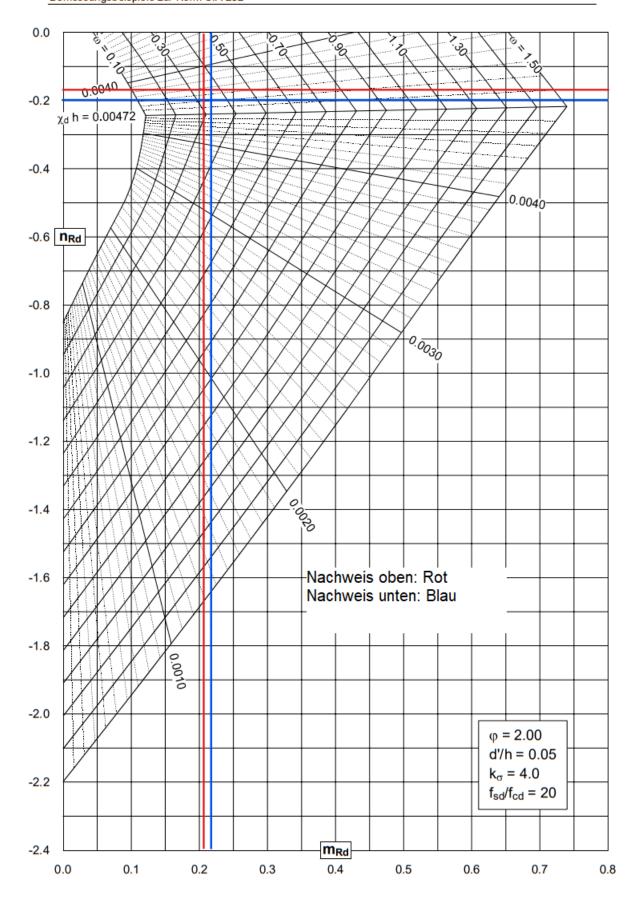
9.1.6 Temperatur



9.1.7 Anprall


9.1.8 Erdbeben

10 Nachweise


10.1 Pylone

10.1.1 Nachweis: Knicken (oben)

10.1.2 Nachweis: Knicken (unten)

Nachuels Blone (Knicken) nach 5	5/A 262:2013 (anta)
Asmin = 6000 mr2 Asma,	x = 80'000mm²
Ahnahme Gleiche Beuehrung wie ob	pen: As mit \$300 24 \$30=24.707=16918~
Asning As & Asmax V	
Khicklange:	Traghelsradius
(cr = 0.5.1 = 0.5.9m = 4.5m	1c = 0.289m
Enick schlankhot Ler 4.5 2 Ler = Ic = 0.289 = 15.57 Nachnels: Nachnels:	d= 55~~
nro = b.h.fcd = 10002.22 = -0.138 As-fsd 16968.435 W = b.h.fcd = 10002.22 = 0.336 Aus dem Diagramm	
mes = 0.22 7d.h = 0.00452	
Cod = X1 · Lor > 0 (74)	d=h-d'=948 man 0.945 d
$e_{od} = x_1 \cdot z_2 = 0.0033 \cdot z_2 = 0.0033 \cdot z_3 = 0.0033 \cdot z_4 = 0.0033 \cdot z_4 = 0.0033 \cdot z_5 $	75 & G. C32)= 30 = 30 = 32mm
end = Not 4345 0.00452 4500° =	9.3mm (75)
ed = end + end + erd = 32 mm + 515 m	+9.3= 556.3 -0.556m
ud =- Nd · ed = - (-4345) · 0.556 m =	2415.82KNen
Med = meo. b. h2 fed = 0.22-100	
Nochnels: Md 2416 Neo = 4840 = 0.5	c 1 Nachweis 1.0 V

10.1.3 Nachweis: Querkraft

Nachnes Pylon : (Qhokat)	
VED = -2106.9W (Ais) Für die Berns	surgestuation "Angrall" % erhäht worden (4.2.2.3)
160	s = 435 1, ns = 500 1/2 2
	9 d = 8 39.7 (4, 3. 3.4.2)
cot = cot(300) (4.3.3.3.2	(40)
2107. 10 ³ aku + 0.84-col(309.500 = 2897 no	
nit over zweschnittiges Bigelknehung erg	16 stole mit
VRD= ASW Z. cotx.fsa = 3080.0.8397.cot(300)),SCO = 2789-011)
Nochue's! Veo 2106.9 VRDs = 2239.8 = 0.94 < 1 Na.	
Zudam gelton gonass SIA262:2013 Kap. Konstruktive Amforderungen:	5.5.4.7 rock folgode
5 x Pmin . 15 -> 100 515 . 30 = 480 mm	(111)
\$ 5 anin - 100 \$ 1000	(111)
\$ \$300 mm - 160 m \$ 300 mm	(111)
draigel > 3 - 14 > 3 = 16	(5.5.4.9)
Sant ist eine Abstitung optbrigg. 2.13 in	
	(45) kc=0.55 (42.1.7)
=1000.840.0.SS.22.SM20).cc=(30)	
VeD = 2106.9 VRQ = 4401.14 -0.479 < 1 Nochweis =	=Ffält

10.1.4 Nachweis: Lasteinleitung Schrägkabel – Pylon

Lastanletung Schrägkabel - Rylen
Die grösste Lasteinleitung in vertikaler Richtung ergibt sich bel
den Pylonen zuchest
F=-500KN (alifyerundet)
Die Wirksame Querschnittsfläcke der Gabelvorankerung beträgt:
A=b·t=1000.74=74°000mm²
Somit beträgt die Druckspanning im Beton
E 500.103 Oc = A = 74'000 = 6.76 Mm²
Nochuels OE 6,76 Fed = 22 = 0.307 < 1.0 Nachwels 1.0 V

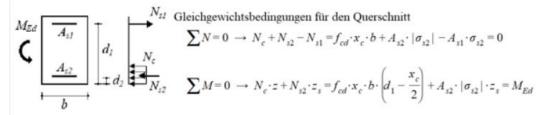
10.1.5 Nachweis: Verankerung Schrägkabel – Pylon

Vecortering: Schrägkobel	, - Pilan	
Für die Verankeung de		Pylone mira
de Gatelveankering von	BBR genählt!	
BBR Pin Connector für	BBR HIAM COMA 0120€	
Eigenschaften		
Material: 5355	Dicke = 74mm = t	
Offring Durchnesso: 121,	~~	
fuerst muss de Hole der	Skalliplatte bestumme	nodes,
Für Beanspruchingen in	Nettquesdrift gil	Hach SIA263:2013:
Neo = 0.9 Fur Amet (39)		fu= 490 N/m ~ (Tab1)
Und mil der Bracklast F.	o = 3348 kN	t < 100n-
3398.103 = 1.25	10	7mz=1.25 (4.1.3)
3398.10 = 1.25 0 9 fc. Anet 0.9.490.	130.74 128.24 mm W	all h=130mm
0.9 f. Anet 0.9.490. NED = 1.25 = 1.29 Fo 3348 Nachuels: Nep = 3393.94	= 3893.9460	(2)
		ies effill
Ansicht:	Längsschrift	
7.4		9 113
1.00	100	*

10.2 Querriegel

10.2.1 Nachweis: Biegung (Zug oben)

Geometrie


Dicke des Querschnitts: h = 400.0 mmBreite des Querschnitts: $b_w = 400.0 \text{ mm}$

Schnittkräfte

$$N_d = -1047.927 \text{ kN}$$
 $M_d = 220.655 \text{ kNm}$

In dieser Programmversion wird die Normalkraft bei der Ermittlung der erforderlichen Längsbewehrung vernachlässig!

Bemessung der Biegebewehrung

Teil-Resultate

Statische Nutzhöhe:

$$d = 331 \text{ mm}$$

Der reine maximale Momentenwiderstand ohne Druckbewehrung:

Maximalhöhe der Druckzone:

$$\varepsilon_s = \frac{f_{sd}}{E_s}$$

$$x_0 = \frac{\varepsilon_{c2d}}{\varepsilon_{c2d} - \frac{f_{3d}}{E_3}} \cdot d = \frac{(-0.003)}{(-0.003) - \frac{4.3478 \cdot 10^5}{2.05 \cdot 10^8}} \cdot 331 = 193.9 \text{ mm}$$

$$x_{c0} = 0.85 \cdot x_0 = 0.85 \cdot 193.9 = 164.8 \text{ mm}$$
 SIA 262 4.2.1.4 Abbildung 12

$$M_{Rd,x0} = \left(d - \frac{x_{c0}}{2}\right) \cdot x_{c0} \cdot b_w \cdot f_{cd,eff} = \left(331 - \frac{164.8}{2}\right) \cdot 164.8 \cdot 400.0 \cdot 22.2 = 363 \text{ kNm} > M_d = 220.655 \text{ kNm}$$

Betondruckzonenhöhe:

$$x_c = 86.49 \text{ mm}$$

Berechnete Fläche der Biegebewehrung unter Zug:

$$A_{s,1} = 0.00178 \,\mathrm{m}^2 \quad (A_{s,min} = 221 \,\mathrm{mm}^2)$$

10.2.2 Nachweis: Biegung (Zug unten)

Geometrie

Dicke des Querschnitts: h = 400.0 mmBreite des Querschnitts: $b_w = 400.0 \text{ mm}$

Schnittkräfte

$$N_d = 76.910 \text{ kN}$$
 $M_d = 254.372 \text{ kNm}$

In dieser Programmversion wird die Normalkraft bei der Ermittlung der erforderlichen Längsbewehrung vernachlässigt.

Bemessung der Biegebewehrung

Gleichgewichtsbedingungen für den Querschnitt
$$\sum N = 0 \rightarrow N_c + N_{s2} - N_{s1} = f_{cd} \cdot x_c \cdot b + A_{s2} \cdot |\sigma_{s2}| - A_{s1} \cdot \sigma_{s2} = 0$$

$$\sum M = 0 \rightarrow N_c \cdot z + N_{s2} \cdot z_s = f_{cd} \cdot x_c \cdot b \cdot \left(d_1 - \frac{x_c}{2}\right) + A_{s2} \cdot |\sigma_{s2}| \cdot z_s = M_{Ed}$$

Teil-Resultate

Statische Nutzhöhe:

$$d = 331 \, \text{mm}$$

Der reine maximale Momentenwiderstand ohne Druckbewehrung:

Maximalhöhe der Druckzone:

$$\varepsilon_{s} = \frac{\varepsilon_{c2d}}{E_{s}}$$

$$x_{0} = \frac{\varepsilon_{c2d}}{\varepsilon_{c2d} - \frac{f_{sd}}{F}} \cdot d = \frac{(-0.003)}{(-0.003) - \frac{4.3478 \cdot 10^{5}}{2.05 \cdot 10^{8}}} \cdot 331 = 193.9 \text{ mm}$$

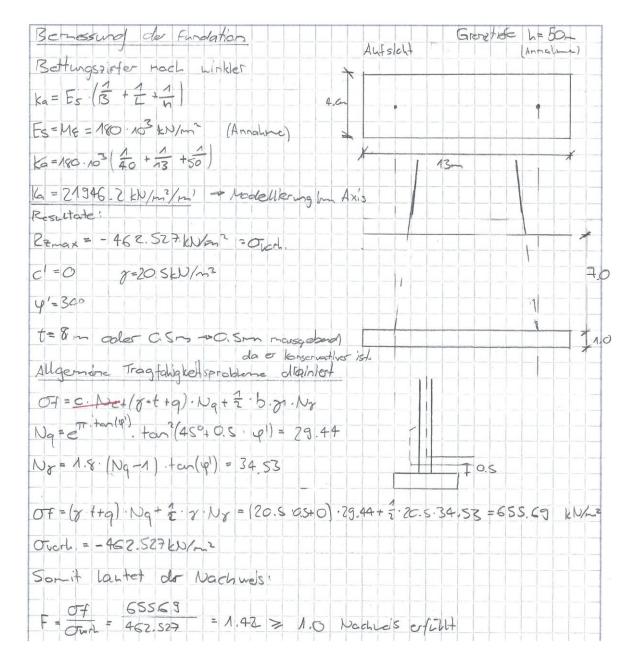
$$x_{c0} = 0.85 \cdot x_0 = 0.85 \cdot 193.9 = 164.8 \text{ mm}$$
 SIA 262 4.2.1.4 Abbildung 12

$$M_{Rd, x0} = \left(d - \frac{x_{c0}}{2}\right) \cdot x_{c0} \cdot b_w \cdot f_{cd, eff} = \left(331 - \frac{164.8}{2}\right) \cdot 164.8 \cdot 400.0 \cdot 22.2 = 363 \text{ kNm} \ > \ M_d = 254.372 \text{ kNm}$$

Betondruckzonenhöhe:

$$x_c = 102.6 \text{ mm}$$

Berechnete Fläche der Biegebewehrung unter Zug:


$$A_{s,1} = 0.00211 \,\mathrm{m}^2 \quad (A_{s,min} = 530 \,\mathrm{mm}^2)$$

10.2.3 Nachweis: Querkraft

Nachue's Querriegel (Querkraft)	
Nachwes am Querrieger 4	
Vznax: 309.2 km.	1 (Inner), Temp-) Crom=40nm
ash = 5 cotx feed (43)	cota) = cot(45°) = 1
d=400-40-25-14=333mm	2=0.9·d=0.9·333=2997~~~(4.3.3.4.2)
309.21=N.103 asw=0.3.1.435 = 2369.45	= (43)
NH ever zweischnittigen Benehring	ergibt steh:
@14/100 - 2.1540 == = 3	30803/-
Veds = ash - 2 · cotx · fsal = 3080 · 0.	3.1.435 = 401.95 EN (43)
Betanwiderstand	
VRDc = bw · 2 · kc · fed · sin(x) · cos(x	(45) ke=0.55 (4.2.1.7)
* 400-300-0.55-22.5/n(45) VRDC = 726 KN	·cos/45")
Nochue's erfolgy nit dem Keiner	non word: VROS da Veos < VROS
VED = 309, 2kN VRDS = 402 EN = 0.77 < 1	Nadweis i. O
Konstruktive Andriderunger (SIA 20	52,2013, Kar 5.5.4.7)
S = @ rin 15 - 100nn = 1	15.26=390ml V (111)
s = anin + 1con x	400mg (111)
5 5 300 mm - 100 mm 5	
drige > 25-0x - 14 - >	$\frac{33}{3} = 10$ \vee (5.5.4.9)

10.3 Fundation

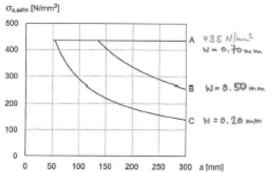
10.3.1 Nachweis: Tragfähigkeitsprobleme

10.4 Schrägkabel

10.4.1 Nachweis: Tragvermögen

Nachweis der Schrägkeball
Maximale Kabelkraft Nx = 726KU (Ans Axis)
Das Tragvernigen der Kabel ist aufgrund der grössten Stablispannung aus Standigen Lasten wie talgt nachtundsen: (nach Christian Monn)
07, max (q+q) & 0.45fpx12 oder 0.50fpk
OT, max & O. SD fpk Bruchlast fpk = 1860 Hmm² Nxmax OTmax = A Jepk = A Ketaleg BBR)
Wall der Glosschnittsfläche:
A = 12 - 150 - 2 ABR HIAM CONA 01206
T76.103 F-ax = 3348kN OTNOX = 1800 = 403.5 1/2 - 1 3348:103 fpk = 1800 = 1860 1/2 - 1
OT-9x 60.5 fpk
403.5 Mm = = 930 Mm = = 0.5.1860 - Nachue's 1.0 V
Aus der Sicht vom Nachmels der Tragsichehelt könnte der Kabeltyp Feduziert herden. Dies wird jedoch bewusst nicht gemacht ob ansonsten die Verformungen dur Brücke nicht mehr chagelalten haren. Die Verspannung derf auch nicht erhöht weder da es ansonsten beim Lastfall ULS LM1 (Innon) zu grosse Verformungen nach oben gibt.
Die Largericheleung beim Kabeltyp BBR HiAm CONA 00706 beträgt bei besplelsweise 726kB.
mt 0=+·s
One = 403.5 19 mm²
$mit E = \frac{\Delta l}{lo} \qquad lo = 17m (projizient)$
AL12 = 10 - E12 = 17 · 0.002019 = 35,18mm
1 = 6.87 = 17.0003596 = 60.28 mm
Stigoung in % = 35.78 = 1.71 -> +71% Al = Alt - Altz = 60.28 - 35.18 = 25.1 mm
Der Einfluss der Litzenamahl ist smit sehr gross.

10.5 Fahrbahn


10.5.1 Mindestbewehrung

Mindestbewehrung (nach SIA 262)

Querschnitt:

h	260	mm	
h - d	55	mm	Randabstand
d	205	mm	

Figur 31: Spannungsbegrenzungen in Funktion des Stababstands

Betonzugfestigkefotd = kt + fotm

f _{otm}	3.20	N/mm ²	
f _{ctd}	3.07	N/mm²	Biegung
kt	0.96		Biegung
f _{ctd}	2.83	N/mm²	Zug
kt	0.88		Zug

Spannungsbegrenzung des Betonstahles:

Rissbreiten w 0.50 mm normal w = 0.7 mm (A), erhöht w = 0.5 mm (B) Stababstand 150 mm $\sigma_{\textbf{c}, adm} \qquad 399 \text{ N/mm2}$ $\sigma_{\textbf{s}, adm, \text{ theor.}} \qquad 399 \text{ N/mm2}$ $Es \qquad 205'000 \qquad N/mm2$

1. Verhindern sprödes Versagen beim Erreichen von fotd "Biegebeanspruchung"

$$M_{rd} \approx f_{ctd} W_c \le A_{s,min} f_{sd} z_s$$
 mit $z_s = 0.95 d$

$$M_{rd} = 34.6 \text{ kNm}$$
 $W_c = 1.1E+07 \text{ mm}^3$

$$A_{\epsilon,min}: M_{rd}/(f_{\epsilon d} * z_{\epsilon}) = 408 \text{ mm}^2$$

gewählte Mindestbewehrung

Ø [mm]	s [mm]	A's [mm²]	ρ
10	150	524	0.20%
		pro Seite	

Stahlspannungen Bedingung: $\sigma_{c} < f_{cd}$

 $\sigma_{e} = 339 \text{ N/mm2} < f_{ed} = 435 \text{ N/mm2 i.O.}$

2. Begrenzen der Rissbreiten unter aufgezwungenen oder behinderten Verformungen (beim Erreichen von fctd) "Zugbeanspruchung"

$$A_{c,min}$$
: $f_{otd} * A_{ot} / \sigma_{c,adm} =$ 1'847 mm²
 $A_{ct} =$ 260'000 mm2

gewählte Mindestbewehrung

Ø [mm]	s [mm]	A's [mm²]	ρ	A _s [mm ²]
14	150	1'026	0.39%	2'053
		pro Seite		total

Stahlspannungen Bedingung: $\sigma_{\text{G}} \leq \sigma_{\text{G,adm}}$

 σ_{e} = 359 N/mm2 < $\sigma_{e,adm}$ = 399 N/mm2 i.O.

10.5.2 Nachweis: Biegung

	A 7	
Northweis Fahrbahnplatte (Bjegebenchrum	10) 17 X	Chang = 35 mm
Mindestbenching \$14 150	8 8 8	h= ZZGm
Benchmy wird an der Tiefsfor stalle 220 h		
4 Massacher of Benchungsmoments	Annahme Benehru	- ANKMO
wesder itsesprialt:		
mxBu+ = 105.5kWm/m (ober)	d=n-cna-=2(
m. R = -838Wn/- 111	dsu=220-35-	
	adsqu 270-35-19	3-30=157-
my Bu + = 71.5 km/m (cha)	dsto = 220-20-18	
my Bb- = -141. Skum/h, (unter)		
henach de alatung -120kVn/m	dsq = 220-20-1=	3-2=173mm
Es ist zu brochter dass die vorzeichen gekent werden müssen:	aus dem /4XIS	the Momente
Maximale Bruehrung ober in Brick	enlargstichtung t	24
mxBw+=1055km/m und ds 10=1		
my RD = As . fsd . (dsia - 7.8 feel) = 1700. Nachwels: MyRD = 128.8 = 0.82 < 1	+ = 71.5 Woman w	nd dq0=173mm
mx RD = As. fsd. (dsia - 7.8 Acal) = 1700	. 435 /191-21000.22	= 128,8 KN-/m
Nachwels: MyRD = 128.8 = 0.82 < 1 1	Pu 1.0 V - 4. Lag	= Q18/130 max
myBu+=71.5 Wm/m don = 173m		
Myro = As fsol (ds as +2 b food) = 1700.	435-1773-2-1000	5)=115.5kNrg/
17/80+ 71.5 = 0.67		
Nachues: myro = 71.5 = 0.62 < 1 Nw		Ø18/150 max
Meximale Backing into in Brickes		
mxBw==-83.8 Wm/m & dshu=1	76-	
MXRD = As tsd · (dsin - 7.6 + 60) = 1700	.435 (176 - 7. 1200.	35) 27/= 1177 Wm/m
Nachurs Myrs = 1173.7 = 0.71 & 1.0 M	wicv - 1. lage o	118/150
Quer unter: Noch der Glätt		
myBu - = - 141.5 KNm 120 KNm/m C	dsqu = 157 mm	
Myro = As fed (dsca - 2 bited) = 2090 + 425 -1.	157 - 2.100.0 . >) =/	123 95Llan
Machiels: Myeo = 123.95 = 0.97 < 1.0		0.000
NGCHES. MYES 1/23.95 9.39 4 10	Nw 1.0 V 2, Lag	0 9 20/150

10.5.3 Nachweis Querkraft:

Nachuels Fahrbahnplatha (Queskraft)	
Für Balteile ohne Quetraftbehehme	ist nach SIA22,2013
folgonder Nachneis enachte	8 9 6
Vo 41 /35)	KA = 1 + Ev · ol· kg = (36
Vo = \Vx2 + Vy2 = Vez	= 1+0.00318 164 1 kg=16+12-ax = 0657 48 = 106+32 = 10 (35
VRD = kd · Ted · dv	d=220-19-7-35=1647
=0.687.1.2.171 = 139.82, EN/m	(39) Ev = 1.5, Es = 0.0031
VRz im obstand dv/z beträgt: Im feld Vez = 55kV/m = Vo	Ted = 1.2 N/mm (Tab
Nachus: No 55 W/m Nrb = 134.20 W/m = 041 41.0	dv=270-14-35=1711.
Beiden Rylonen:	
Ve = 199,3 W/L	
Durch die Punkthelle lagering der	Fahrtalm entsteht hier ein
Spitzenwertder nicht obgedeckt werde	7 km. In der State Verprojeld
muss dieser fall neld weiter überprüft	
Det Quarkaftsmacheds könnte hier wie	
- Rigalkorbe elisates (2.8 Dira Bi - Netzbreite im Axis angasces - Unterzig angasses sodass die Quek	gallosbe) crafto basso singebutet worden kommen
Stoft	
20	450
Be der Vosiante 3 nouss beachtet v	
und somit die Vorspannungskräf	te' geander weder mussen

10.6 Konsole

10.6.1 Nachweis: Biegung

Nachue's Konsole (Blegung) mach	h 5/A 252:2013
	h= 540~~ b= 375~~
Maximole Benefiting ober:	form = 3,2 m/m = (Tab 3)
0-3725Wm=Md	7dm = 3,2 /mm = (1ab S)
	feta = fetu · kt (98)
Mer = fold · We	A = 1+0.5¢ = 1+0.5.0.154 (99)
= 7.936 · 1.8225 · 10 = 53.5 W.	
Offorderlide Beliehrung:	= 0.917 ford=form kt=3.2.0.917=2.936 /mm²
MB = Asaifsod (ds - Asert food)	we = 6 = 375.5402 = 1.8725.107 5
3775 105 Asa 435 (462 - 2.375 22)	d= 540-55-25 -10 = 462nm
in TR! Asof = 2107mm - agel	ahlt: 5.026 = 5.531 - 2655nm
Bestimming x	
As.fsd 2655-435 X=0.85.6.fcd =0.85.375.22 = 16	1.7 mm ds = 462 = 0.35 < 0.35 V
Bestlyning Bicgewldostand	
MRD = 2655 - 435 - (462 - 0.425 - 16	(4,7) = 482.7km
Nachuels:	
Myd 372.5 Mro = 4527 = 0.82 < 1	Nachuds IC
Max. Beuchrung unter	
	Mer = 53.5Wm Nd = +215.5Wm
Bestmanne x 1593.435	La Aserf = 1147.4 mm + regerable
Bestmany X 1593.475 X = 0.85.6.400 = 0.85.375.22 = 98.8 X 98.8	3/276=3.531=1593~.~
Duktilitat: a = 98.8 = 9.214 €	0.35 /
Bestimming Biegewickerstand	Nachueis
Meo = As fsd (d-0.425x)	Mal 215.5 Mep 251 = 0.74 < 1.0 Nu 1.0
= 1593-435-(462-0.425-98-8	10160
= 291 Wm	

10.6.2 Nachweis: Querkraft

Nachweis Konsde	(Quekrat)			
V2max = VED = 12° (ULS	9.8KN	de Nachuel	olv Kensobe	tur
	LM (Ihner), Ten	b=375	am	
ash = s.cetx.fd	(4-2)	$\cot(\alpha) = c$		
d= 540-55-26		7=0.9-d=0.9		M 743
123.8.103 ash = 0.412.1.435 = 7		7 -0 . j · a · 0 . j .	438 - 7-12	
Mit oiner swelschnill	igon Bouching c	ergibt slch:		
010/150 -	→ 2·523 ====================================	1046 ===		
VRD is = asw - 2. cot	-x. Fsd = 1046.0	472 · cet (45°) · 435	= 187.46 kN	(43)
Betonwidestand				
VRDe = bw · ¿· Ke·f	cd sin(x) cos(x)	(45) kc = C	5.55 (4.2.1=	7)
	·0.55-22·5/n(45			
VROC = 935.2KN				
Nachuels erfolgt r	mit dam Klebere	n wet: Veas	cla leos < VR	De
Ved 130 Veds = 187,46	0.69 < 1.0	Nachwels 1.0 V		
Konstruktive Anfora				
5 5 0 min .15 -	- 150mm	< 15 · 26 = 390	1 (111)	
S & amin -	150mm	\$ 375mm	1 (111)	
	150mm	< 300nm	V (11n)	
Olsigel > 3	- 10 mm) 3 = 10 mm	V (5.5.4.	3)

10.6.3 Nachweis: Lasteinleitung Schrägkabel – Konsole

Nachue's: Lasteinfeltung Schrägkahd - Konsole
Der Nachmis für die Lastonleitung isterfillt - Frax = 725.6km (Axis)
kc=1.0 für Druckstreben (4.2.1.7)
Cos < 1 ; fed + 22.0 Mmm2 (Tab. 8)
Oc3 = A ; b = 316 mm; h = ? Frax 725640
Oc3 = 6 · h 316 · 100 = 20.9 /mm ; Amaline h: 110
003 20.9 fcd/16 22 1 = 095 < 1 - Nachuel's 1.0 V Schnitt: 218
Damit die Losteinleitung von der Kensole ins Schrägkabel funktioniert, muss die Kraft Franz gleichmassig auf der Flache A vorteilt uorden.
Defir werden Druck-& Steiteschehm über h. K. die genze Auflagefläche AA angeordnet. h.
h_1 = h·sin(B) = 110·sin(65.65°) = 100.215 mm N=24.35° (Aus Verburings- berechnung)
Danit das Bewerfahren verzinfacht wird bleibt B=180°-90°-X die Auflagefläche Ainmer gleich. Einzig der B=180°-90°-24.35°=65.65° Winkel Bändert sich je rach Kobelnegung.

10.6.4 Nachweis: Abscheren: Fahrbahnplatte - Konsole

Nachue's: Abschoon: Fahrbahnstatte - Konsole nach SIA 202: 2013
Für Bantelle Ohne Querktaftbewehrung ist nach SIA 262:2013 Kaf. 4.3.3.2 folgender Nachuels zu erbringen
NRD > VO - VRD < 1 (35)
Vo=+ Vx2+Vy2 ; Vx=129.8 kW Vy=23.6 kW (Ais)
Vo=√129.8²+23.6² = 129.89 →129.9EN
VRO = kd. Tod. OV (35) ; Tod = 1.20 M/ (Tab 8)
(cd = 1+Ev·d·leg 48 48
15g=16+D=0x=16+32 = 1 (37) 1 D=0x=32=
Ev = 1.5 Es = 205'000' 1.5 = 0.00318 (39) ; fsol = 435 // Es = 205'000' 1.5 = 0.00318 (39)
Kal = 1+ Ev. al ikg = 1+0.00318 220.1 = 0.588
VRD = kd · Tcd · dv = 0.588 · 1.20 · 220 = 155,3kD
Nochnels: Vo 129.8 VRD 155.3 = 0.84 & 1 -> Nachnels 1.0 V Es it keine Quarkraftberchung
enforchefich.

10.7 Unterzug

10.7.1 Nachweis: Biegung (Zug oben)

Geometrie

Dicke des Querschnitts: h = 420.0 mmBreite des Querschnitts: $b_w = 200.0 \text{ mm}$

Schnittkräfte

$$M_d = 46.972 \text{ kNm}$$

Bemessung der Biegebewehrung

Teil-Resultate

Statische Nutzhöhe:

$$d = 359 \, \text{mm}$$

Der reine maximale Momentenwiderstand ohne Druckbewehrung:

Maximalhöhe der Druckzone:

$$\varepsilon_s = \frac{f_{sd}}{E_s}$$

$$x_0 = \frac{\varepsilon_{c2d}}{\varepsilon_{c2d} - \frac{f_{sd}}{E_s}} \cdot d = \frac{(-0.003)}{(-0.003) - \frac{4.3478 \cdot 10^5}{2.05 \cdot 10^8}} \cdot 359 = 210.3 \text{ mm}$$

$$x_{c0} = 0.85 \cdot x_0 = 0.85 \cdot 210.3 = 178.8 \text{ mm}$$
 SIA 262 4.2.1.4 Abbildung 12

$$M_{Rd,x0} = \left(d - \frac{x_{c0}}{2}\right) \cdot x_{c0} \cdot b_w \cdot f_{cd,eff} = \left(359 - \frac{178.8}{2}\right) \cdot 178.8 \cdot 200.0 \cdot 22.2 = 214 \text{ kNm} > M_d = 46.972 \text{ kNm}$$

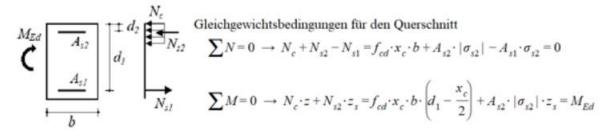
Betondruckzonenhöhe:

$$x_c = 30.84 \text{ mm}$$

Berechnete Fläche der Biegebewehrung unter Zug:

$$A_{s,1} = 0.000318 \,\mathrm{m}^2 \quad (A_{s,min} = 120 \,\mathrm{mm}^2)$$

10.7.2 Nachweis: Biegung (Zug unten)


Geometrie

Dicke des Querschnitts: h = 420.0 mmBreite des Querschnitts: $b_w = 200.0 \text{ mm}$

Schnittkräfte

$$M_d = 153.893 \text{ kNm}$$

Bemessung der Biegebewehrung

Teil-Resultate

Statische Nutzhöhe:

$$d = 359 \, \text{mm}$$

Der reine maximale Momentenwiderstand ohne Druckbewehrung:

Maximalhöhe der Druckzone:

$$\varepsilon_{s} = \frac{f_{sd}}{E_{s}}$$

$$x_{0} = \frac{\varepsilon_{c2d}}{\varepsilon_{c2d} - \frac{f_{sd}}{E_{s}}} \cdot d = \frac{(-0.003)}{(-0.003) - \frac{4.3478 \cdot 10^{5}}{2.05 \cdot 10^{8}}} \cdot 359 = 210.3 \text{ mm}$$

$$x_{c0} = 0.85 \cdot x_0 = 0.85 \cdot 210.3 = 178.8 \text{ mm}$$
 SIA 262 4.2.1.4 Abbildung 12

$$M_{Rd,x0} = \left(d - \frac{x_{c0}}{2}\right) \cdot x_{c0} \cdot b_w \cdot f_{cd,eff} = \left(359 - \frac{178.8}{2}\right) \cdot 178.8 \cdot 200.0 \cdot 22.2 = 214 \text{ kNm} > M_d = 153.893 \text{ kNm}$$

Betondruckzonenhöhe:

$$x_c = 115.2 \text{ mm}$$

Berechnete Fläche der Biegebewehrung unter Zug:

$$A_{s,1} = 0.00119 \,\mathrm{m}^2 \quad (A_{s,min} = 353 \,\mathrm{mm}^2)$$

10.7.3 Nachweis: Querkraft

Nachue's Unterzug (Querkiaft)
Nachues an UBZ
Vznax = 167.2HD , ULS LM1 (Innen), Temp +
$asb = \frac{1}{2} \cdot cetx \cdot fscd$ (43) $cct(x) = cct(45^{\circ}) = 1$
d=200-20-2-14=158mm =0.9-d=0.9-158=142.2mm (4.3.3.4.2)
asw=0.1422 1.435 = 2703.01 = (43)
niteiner zueschriftiger Brigelbenehrung ergibt sieh
@14/100 -12 2.1540====================================
VRDS = asw · Z·catx·fsal = 3080.0.1422-1-435 = 190.52 W
Betonuderstand
VRDe = bu 2 · k. fcol · sir(x) · cos(x) (45) ke = 0.55 (4.21.7)
F Zeb. 1422 · O.SS · ZZ · sin(45) · cos(45°) + 172.062 km
Nachuels nit dem kleiner wort: VRDc - VRDc < VRDs
VED 167.2 VROC - 122 = 0.972 < 1.0 Nachue's erfüllt V
Kenstruktive Antordengen (SIA 252:2013 Kap. 5.5.4.7
55 Prin - 15 - 100 mm x 15.16 = 240 mm (111)
5 = amin - 100 mm = 200 mm V (111)
5 & 300mm = 100mm = 300mm (111)
driger > 3 - 14mm > 3 = 10 (5.5.4.9)

10.8 Durchbiegungen

Nachuels do Gebrauchstanglichkeit Durchblegungen
Haufige Lostfalle
Massgeterde werte: (Aus dem Axis)
78m (Innoes Feld) - ez = -127.5mm
35- (Linkes feld) - tez = -52.1 mm
38m (Reclites Feld) - = = 61.7 mm
Gosamtverformungen! Folls Nw. nicht gelinger konnen die Relativverformgen
hetroditet werdes Nach 514 260:2013 Ahhang = Tabelle 3 dorf die Drehblegung den Wort 1/600 nicht übersteigen (Komfort)
Wmax = 600 = 600 = 0.13m = 130mm
Wmax2 = 600 = 0.0583 m = 58.3 m
Vmaxz = 600 = 0.0633 = 63.3mm
Nachuek:
eza & wmaxa -> 127. Sas 130 mm - Nu 10 V
Cz2 5 Wmax2 -> 52.1m~ 5 58.3mm -> NL. 1.0 V
ezz < wmars + 61.7 mm = 83.3 mm - Nu 1.0 v
Quasi-Standige Lastfalle Fur Quasi-Standige Lastfalle
78 m (Inneres Feld) - C21 = -65.7 mm datf die Durchtingung den
35m (Linkes Feld) - eq = 18.6 mm (Funktions tuckfighet & Ausselan)
38m (Rechtes Feld) - czz = 19.4 mm
$-\frac{(4)}{28} = \frac{700}{700} = \frac{700}{200} = 0.111 = 11$
12 35 Wmex2 = 700 = 700 = 50nm 13 38 Wmax3 = 700 = 700 = 0.054m = 54mm
Nachueis.
EZA < Wmox → 65.7 mm ≤ 1111mm - Nu. 1.02
€22 6 Wmax -> 18.5m 5 50mm, - Nu 1.0V
C23 & Wmax - 19.4 mm & 54 mm - Nw, 1.0 V